Refine Your Search

all resources on the CAFE website

Refine Your Search

all resources on the CAFE website

NIFA Planned Research Initiatives

Environmental Conservation

Department of Project: Stockbridge School of Agriculture

Global climate change affects every aspect of our life. Global warming increases the intensity of drought, which leads to the increase in frequency and severity of forest fires. Beyond being a source of soot and polyaromatic hydrocarbons (PAHs), severe wildfires/forest fires can damage soils, water quality and quantity, fisheries, plant communities, wildlife habitat, and endangered species; result in economic and property loss; and cause harms to the environment and public health. Forest thinning or prescribed burns reduce the accumulation of hazardous fuels and restore forest health.  The major cause of global warming is the ever-increasing concentration of carbon dioxide (CO2) in the atmosphere from the use of carbon-based fuels. Biochar, the anaerobic pyrolysis productof biomass waste material, has attracted research interest as a soil amendment that may improve soil structure, moisture retention, and buffering capacity, and that helps control plant root diseases and sequester carbon in soils (instead of release to air as CO2), as a result, mitigate greenhouse effect. Therefore, the goal of this proposed project is to utilize wood waste materials to produce biochar which can be used in both forest and agricultural soils to improve soil quality, sequester carbon in soils, and reduce the emission of greenhouse gases (e.g., CO2 and N2O).

 

The long-term goal of this research is to gather more empirical data that will help practitioners decide which trees to choose for a particular site. The same settings where trees provide benefits present challenging and even severe growing conditions that may thwart survival and growth (Jutras et al. 2010). Empirical data to describe the survival and growth of such trees are limited, and most of the work has considered trees growing in field plots rather than actual residential settings (Watson et al. 1986; Morgenroth 2011). This work will help to quantify survival and growth of trees in residential settings.

The presence and prevalence of known pathogens of honey bees and bumble bees will be measured to assist in determining the role that these agents play in the decline of bee colony health. In addition, the project will focus on the impacts of certain pesticides in agricultural settings on bee pollinators other than the already well-studied honey bees.

Two new fungicides now dominate applications of choice during cranberry bloom and are recommended for simultaneous use. Growers frequently add an insecticide simultaneously to the fungicide mix in order to manage the key pest, cranberry fruitworm. Alone, all of the compounds are considered 'bee safe' and bloom sprays are allowed. Our preliminary assessments suggest that bees may be at risk by these combination sprays, perhaps owing to a synergy of the compounds. The proposed cage studies will look at immediate and more long term impacts of this practice.

Acid rain and atmospheric pollution continue to be regional and national problems. The site's data contributes to the accurate assessment of precipitation chemistry and the effectiveness of the nation's air pollution laws and regulations.

Department of Project: Department of Microbiology

Global climate change and nitrogen deposition are processes that will only increase as industrialization continues. The purpose of this study is to understand the response of the microbially driven soil nitrogen cycle to the combined effects of temperature increase and nitrogen amendments in forest soils of New England.

Department of Project: Stockbridge School of Agriculture

With increased pressure to utilize more practical, ecological and economically feasible strategies to manage turfgrasses, research is needed to identify best management practices to preserve water resources. The primary goal is to increase sustainability of turfgrass by addressing water conservation issues, including (i) efficient irrigation strategies based on actual turfgrass water use, (ii) drought resistant species and cultivars, and (iii) an artificial wetland system to aid in preservation of water quality from managed turf settings.

The goal of this research is to gain better insight into the decision making process of Massachusetts forest-owning families in regards to the future of their land so that educators may tailor outreach programs and material to help these families make informed decisions about it. The cumulative effect of the independent decisions that these landowners make about their land will determine the future of our landscapes and the public benefits they continue to provide (or not to provide).

Department of Project: Department of Microbiology

Reaching the potential for renewable biofuels depends on the development of new technologies that are able to release the energy stored in cellulose fibers. This research project centers around an unusual microbe, Clostridium phytofermentans, that can convert a broad range of biomass sources directly to ethanol without expensive thermochemical pretreatment. Further development of conversion processes using C. phytofermentans will create a path to renewable biofuels using our region's sustainable forestry and crop resources.

This project involves development of a new efficient alternative for light-frame construction -- a sustainable biomaterial composite deck system, a floor or roof comprised of wood-based beams and a concrete slab that are integrally connected to function as a single unit. It is expected that this work will change the way light-frame construction is being done in North America towards more sustainable building practices that reduce material and energy consumption.

Energy

Department of Project: Department of Microbiology

Nearly all food and agricultural waste in the U.S. enters landfills, making it the largest contributor of material entering these sites. Biological pre-treatment of large organic molecules by fermentative organisms lowers the high organic carbon load in waste, lowers wastewater treatment costs, and can produce bioenergy to partially offset costs. Conceivably, microbes that grow best above 80°C, or so-called ‘hyperthermophiles’, could be used to consolidate wastewater heat treatment and organic remediation in a single step to decrease costs while producing H2 as an energy product.

Department of Project: Department of Biology

    All food crop varieties, regardless of species, must meet certain quality standards related to their role in food production. Humans have achieved these quality standards through millennia via the processes of domestication and breeding for improvement.

Utilities and power developers are buying farm land, removing it from agricultural production permanently, and placing photovoltaic solar arrays on the land. This research effort is investigating the possibility of dual use of farm land for agriculture and photovoltaic electrical power generation.

Department of Project: Department of Microbiology

Reaching the potential for renewable biofuels depends on the development of new technologies that are able to release the energy stored in cellulose fibers. This research project centers around an unusual microbe, Clostridium phytofermentans, that can convert a broad range of biomass sources directly to ethanol without expensive thermochemical pretreatment. Further development of conversion processes using C. phytofermentans will create a path to renewable biofuels using our region's sustainable forestry and crop resources.

This project involves development of a new efficient alternative for light-frame construction -- a sustainable biomaterial composite deck system, a floor or roof comprised of wood-based beams and a concrete slab that are integrally connected to function as a single unit. It is expected that this work will change the way light-frame construction is being done in North America towards more sustainable building practices that reduce material and energy consumption.

Water

This project utilizes robotic submersible technology to characterize submerged aquatic vegetation (SAV) blooms in the Charles River in Massachusetts.

This project involves monitoring the levels and locations of EDCs (endocrine disrupting compounds) in the Assabet River of eastern Massachusetts to advance the protection of the aquatic environment.

Department of Project: Stockbridge School of Agriculture

With increased pressure to utilize more practical, ecological and economically feasible strategies to manage turfgrasses, research is needed to identify best management practices to preserve water resources. The primary goal is to increase sustainability of turfgrass by addressing water conservation issues, including (i) efficient irrigation strategies based on actual turfgrass water use, (ii) drought resistant species and cultivars, and (iii) an artificial wetland system to aid in preservation of water quality from managed turf settings.

Pages