Back to top

Department of Biochemistry and Molecular Biology

Molecular Characterization of Plant-microbe Interactions

Plant diseases cause crop loss, reduce food production and threaten global food security (Savary et al., 2012). Focusing on two distinct pathosystems that cause Fusarium vascular wilts and the Basil downy mildew (BDM), respectively, we proposal to establish a pipeline to dissect host-pathogen interactions and provide novel means to develop disease resistant cultivars in order to manage plant diseases that threaten food security. Fusarium oxysporum species complex can cause vascular wilt on over 100 cultivated plant species (Beckman 1987, Moore et al.

Terpenoid Biosynthesis in Sclerotinia homoeocarpa

Natural products have a long history of providing novel compounds either directly or as lead compounds for human therapeutics, nutrition and agricultural applications. Fungal diversity has evolved over 900 million years and concurrent with this evolution is diversification of the natural product chemistry resulting in an impressive array of compounds known as specialized metabolites.

Understanding Pollen - Pistil Interaction as a Basis Towards Improving Reproductive Yields in Plants

The project addresses how flowering plants achieve fertilization, which if unsuccessful will result in reproductive failure, devastating agricultural productivity. Pollen grains germinate on the stigma, the receptive surface of the female organ pistil. Each pollen grain hydrates and extrudes a pollen tube whose function is to transport two sperm cells carried in its cytoplasm to the female gametophyte inside an ovule, usually located at some distance from the stigma.

Bio-prospecting for High Added-value Compounds from Cultured Cells Derived from Local Plants and Crops

Plants are an ancient, rich and sustainable source of natural chemodiversity in the form of alkaloids, terpenoids, flavonoids, tannins and other classes of small-molecular-weight compounds (phytochemicals). Lacking the adaptive immunity of animals, plants evolved to rely on small molecules for their survival, proliferation and reproduction.

Discovery of Bioactive Natural Products and their Biosynthetic Pathways from Diverse Plant Species in Culture

Plants are capable of producing a great diversity of relatively small organic chemicals that are called “secondary”, or, more recently, “specialized” metabolites, because they are not involved in central metabolism (Gang, 2005; Weng and Noel, 2012). Currently, well over 200,000 distinct molecules are known to be produced by plants and found to serve many important roles. As pigments, scents, and flavors they attract pollinators and seed dispersers (Gang, 2005).


Subscribe to RSS - Department of Biochemistry and Molecular Biology