Back to top

Department of Biology

Iron Transport in Zea Mays

Our current ignorance of most of the mechanisms involved in plant iron homeostasis is a major obstacle in devising approaches for biofortification of staple foods with iron. Biofortification refers to the genetic engineering of staple crops to accumulate additional bioavailable iron in edible parts, and is widely regarded as a sustainable means of improving the iron nutrition of the 2-3 billion people worldwide (World Health Organization) whose inadequate diet causes iron deficiency anemia.

Surveying the Energy Crop Model Brachypodium Distachyon for Improved Thermo-Chemical and Biological Conversion Efficiency

Increased use of biomass fuels is a promising option for renewable fuels that could decrease our dependence on oil and reduce greenhouse gases. Unfortunately, we currently do not have clear knowledge about the plant traits that should be considered bioenergy traits and should be subjected to breeding and selection. We propose to use a grass energy model organism (Brachypodium distachyon), and treatment with two promising plant biomass transformation techniques (biological and thermochemical conversion) to examine the effect of natural diversity on biofuel production efficiency.

Pages

Subscribe to RSS - Department of Biology