Back to top

Massachusetts Agricultural Experiment Station

Red Spruce-Balsam Fir forests in Massachusetts: forest dynamics in natural communities vulnerable to climate change

It has been hypothesized that climate change will cause plant species ranges to shift northward with plants at the south end of ranges declining in vigor and growth rate. The purpose of this research is to test this hypothesis for red spruce and balsam fir along the southern end of the continuous distribution of these species, in Massachusetts. By measuring the growth patterns of these trees, we can determine if the southern end of the range has been declining, relative to more northern stands of these species.

Soil-Based Use of Residuals, Wastewater and Reclaimed Water

With the rapid development and wide application of nanotechnology, the introduction of manufactured nanomaterials into both solid and liquid wastes (and to the environment) is inevitable through production, use, and disposal. It has been reported in 2008 that nano-TiO2 is leached out of house facades into receiving surface waters. Currently, there are over 800 products on the market containing nanomaterials such as lotions, sunscreens, paints, and socks. This research will determine the environmental behavior and process of several types of manufactured nanomaterials.

Surveying the Energy Crop Model Brachypodium Distachyon for Improved Thermo-Chemical and Biological Conversion Efficiency

Increased use of biomass fuels is a promising option for renewable fuels that could decrease our dependence on oil and reduce greenhouse gases. Unfortunately, we currently do not have clear knowledge about the plant traits that should be considered bioenergy traits and should be subjected to breeding and selection. We propose to use a grass energy model organism (Brachypodium distachyon), and treatment with two promising plant biomass transformation techniques (biological and thermochemical conversion) to examine the effect of natural diversity on biofuel production efficiency.

Trace Elements Affect Methanogenic Activity and Diversity in Enrichments From Subsurface Coal Beds

Global climate change and nitrogen deposition are processes that will only increase as industrialization continues. The purpose of this study is to understand the response of the microbially driven soil nitrogen cycle to the combined effects of temperature increase and nitrogen amendments in forest soils of New England. Terrestrial cycling of nutrients is of particular importance due to the effects nutrient cycling can have on plant growth and climate change.

Understanding and Assessing the Functions of Open Space in the Changing New England Landscape

Rural landscapes around the world face intense development pressures from nearby urban areas. In the United States, rampant, low-density development at the urban fringe consumed approximately 800,000 ha of land in the last decade (USDA Natural Resources Conservation Service 2004). New subdivision developments and new towns are blanketing the landscape, often with little or inadequate provision for green infrastructure. This is certainly the case in New England, one of the nation's most densely populated regions. For example, every day 16 ha.

When Family Dynamics Define the Landscape: a Mixed Method Approach to Understanding the Decisions Shaping Massachusetts Forests

Sponsoring Unit: Massachusetts Agricultural Experiment Station

The goal of this research is to gain better insight into the decision making process of Massachusetts forest-owning families in regards to the future of their land so that educators may tailor outreach programs and material to help these families make informed decisions about it. The results will be shared with policy makers interested in supporting family decisions about the future of their land.

Wood Utilization Research: Biofuels, Bioproducts, Hybrid Biomaterials Composites Production and Traditional Forest Products (Project 1)

Reaching the potential for renewable biofuels depends on the development of new technologies that are able to release the energy stored in cellulose fibers. This research project centers around an unusual microbe, Clostridium phytofermentans, that can convert a broad range of biomass sources directly to ethanol without expensive thermochemical pretreatment. Further development of conversion processes using C. phytofermentans will create a path to renewable biofuels using our region's sustainable forestry and crop resources.


Subscribe to RSS - Massachusetts Agricultural Experiment Station