Back to top

Agriculture

Improving human nutrition without artificial fortification of food or use of supplementary mineral nutrients is important in reducing malnutrition. Malnutrition from deficiencies of mineral elements is reported to be on the rise worldwide, even in the United State; it is estimated that half of the world population suffers from mineral nutrient deficiencies, limiting their physical, intellectual, and mental health activities. The deficiencies appear to derive from diminished contents of mineral nutrients in foods of plant (vegetables, fruits) or animal (meats, milk, cheese) origins.

Massachusetts has over 1,000 growers producing greenhouse crops in 12 million square feet of protected growing space (2002 Census of Agriculture). Most of Massachusetts’ greenhouses are heated with either fuel oil or liquid propane. While there are no firm figures available, we estimate that total use of fossil fuels for greenhouse heat is equivalent to nearly 1 million gallons of fuel oil, with emissions in the range of 22 million pounds of CO2 annually.

We will evaluate the influence of rootstocks on temperate-zone fruit tree characteristics grown under varying environments using sustainable management systems.  This will help allow us to better assess the impacts of biotic and abiotic stresses on scion/rootstockcombinations in temperate zone fruit trees and to enhance the sustainability of temperate fruit farming through development and distribution of research based information utilizing eXtension.

The overall objective of this research is to use beneficial bacteria and fungi to improve medicinal and aromatic plant yields quantitatively and qualitatively. Specific objectives are:

The topic of nutrient density in food crops has been active among consumers, producers and the scientific community in recent years. Literature on food composition demonstrates that the mineral nutrient density of vegetables has fallen in the past 50 years. This decline is associated with two factors: declines in soil fertility and with the genetics of plant cultivars that accumulate yield at higher rates than they accumulate mineral nutrients.

Utilizing food systems to improve nutrition without the need for artificial fortification of food or use of dietary supplements of mineral nutrients is important in ending malnutrition. Malnutrition from deficiencies of mineral elements is reported to be on the rise worldwide, even in the United States. It is estimated that half of the world population suffers from incidences of mineral nutrient deficiencies. These deficiencies limit the physical, intellectual, and mental health activities of the affected people.

In order to compete in the marketplace, assure profitability and preserve the environment, cranberry growers must overcome barriers to sustainability. This project has three components related to increased sustainability in Massachusetts cranberry production:

Massachusetts Agricultural Experiment Station Project MAS00999
Duration: October 2010 - August 2015

Our current ignorance of most of the mechanisms involved in plant iron homeostasis is a major obstacle in devising approaches for biofortification of staple foods with iron. Biofortification refers to the genetic engineering of staple crops to accumulate additional bioavailable iron in edible parts, and is widely regarded as a sustainable means of improving the iron nutrition of the 2-3 billion people worldwide (World Health Organization) whose inadequate diet causes iron deficiency anemia.

Pages

Subscribe to Agriculture