

Postharvest Water Applications

- Pre-Cooling Operations:
 - ♦ HydroVac[™]
 - Ice Injection
 - Hydro-Cooling
- ✤ Wash and Dip Tanks
- Flume Wash Systems
- Spray Wash Systems
- ✤ Ice-making
- Cooling Canals

What is the Goal of Water Treatment?

The Predominant role of Disinfection is to prevent introduction and to minimize re-distribution of plant and human microbial pathogens in water

Reduction of surface microbial load is secondary

Factors in Tomato Fruit Infiltration

MG Breaker Turning Pink Light Red Red

- More than 2 min immersion
- More than one layer of fruit submerged
- Typical weight gain < 0.2%</p>
- Stage 1 and 2 fruit more prone than 5 and 6
- Stem scar drying promotes air barrier formation
 Fruit with stem/calyx attached behave as fresh
- Surfactants in water may increase infiltration > 1%
- Waxed fruit may absorb more water in re-pack

Proper Packinghouse Water Sanitation is no Mystery

- * Maintain consistent sanitizer levels in dump tanks and spray washers
- Regularly check automated sanitizer equipment during daily packing
- * Double check automated equipment with manual methods

The Problem

What is the right treatment level?

- Multiple chemical choices
- Multiple product types
- Diverse microbe types
- Different load throughput
- Varying wash/cooling conditions
- Different equipment designs
- Different retention times

Examples of Chemical Disinfection Options

- Chlorination
 - Hypochlorous Acid (HOCI) + ROS
 - Chlorine Gas
 - Sodium Hypochlorite
 - Calcium Hypochlorite
- Chlorine Dioxide
- Chlorobromination
- Peroxyacetic Acid
- Peroxide
- Ozone
- Copper ions + low HOCI (+ Silver ions)

Chlorine is St	rongly Impa	acted by pH	
Total Chlorine	Combined Chlorine		
pН	носі	<u>-0CI</u>	
6.5	95%	5%	
7.0	80%	20%	
7.5	50%	50%	
8.0	20%	80%	

Chlorination Advantages

- Sodium Hypochlorite (liquid)
- · Most widely used method
- · Relatively inexpensive
- Readily available and flexible
- · Easy to adopt for small-scale
- Broad spectrum of activity (yeasts, molds, bacteria, most viruses, algae)

NaOCI Disadvantages

- Potential for toxic chlorine gas formation
- Poor penetration
- Corrosive
- Irritation
- Unstable (out of pH range <6.0, high temp), short half-life
- Formation of potentially toxic by-products (THM's, chloramines)
- Potential for sodium injury

Hyperchlorination of Surface Water May Increase Formation of Undesirable Disinfection By-Products

Trihalomethanes chloroform, bromodichloromethane Known or suspected cancer inducers

Ozone < Chlorine Dioxide < Chlorine S. Richardson, EPA

Chlorine Dioxide CIO₂

- Oxidizer 2.5x "more effective" than chlorine
- Low Sodium, Low Chlorite
- Does not form by-products THMs /DBP's
- Does not form chloramines
- Effective at wide pH ranges

]		

OTENTIAL MICRO-L	OAD FROM	NCOMING	TOMATO FRUI	
Fruit – average log CFU/fruit (25 fruit/sample)				
Sample Location Code	PCA	ECC-TC	ECC-E. coli (presumptive)	
Roma-type incoming	6.25	5.11	< 1.0	
Mature Green Incoming	7.16	6.16	4.15	

	PCA	ECC-TC	ECC-E. coli
Sample Location Code			
Dump Tank Roma-line	< 1.0	< 1.0	< 1.0
Return Flume Roma Line	2.1	< 1.0	< 1.0
Brush spray nozzle – Roma (source water)	< 1.0	< 1.0	< 1.0
MG Round Dump Tank	2.18	< 1.0	< 1.0
MG Round Return Flume	2.58	< 1.0	< 1.0
MG Round 2 nd Flume Tank	1.63	< 1.0	< 1.0
CIO ₂ – 1.8 to 3.3 ppm ove pH 7.8-7.9	er 5h period		

- Sector 1
- Highly effective oxidizer
 No residual concerns
 Minimal DBP's
 Kills pathogens CI doesn't

Ozone (O₃) Disadvantages

- Unstable (short half life)
- Difficult to monitor concentrations
- Difficult to adjust needs based on demand
- May require use of secondary disinfectant
- Must be generated on site
- Worker Safety Issues, Toxicity
- Corrosive

Perc	oxyacetic Com	oounds
H ₂ O ₂ +	CH ₂ COOH	H ₃ COOH
Hydrogen	Acetic	Peroxyacetic
Peroxide	Acid	Acid

Peroxyacetic Acid (POAA) Advantages

- Less impacted by organic matter and soil
- Low foaming
- Oxidizer and Metabolic Poison
- Broad spectrum of antimicrobial activity (particularly good on yeast and mold spores)
- No residue & breaks down to water,oxygen and acetic acid)
- ✤ Generally non-corrosive

Peroxyacetic Acid Disadvantages

- Corrosive to soft metals and skin
- Strong, pungent odor of concentrate and dilution (worker discomfort & safety)
- Varied activity against fungi
- Build up of acetic acid in water
- Need to monitor water turn-over closely
- Prolonged exposure to product may cause tissue damage

Copper Ionization Treatment

* Low voltage electrodes release ions in water stream

- Cu ~ 300 ppb ; sometimes Ag ~ 40 ppb
- Research supports efficacy
 - Cooling towers
 - Ponds and pools
 - Well water holding tanks
- Very stable in 'clean' water systems
- Very slow acting
- Performance requires low (0.4-0.8 ppm) chlorination
 Uses in postharvest wash and cooling operations ???

Measurement

- Spot Checking
 - -Chemical Test Kit
 - Chemical Test Strips
 - Colorimeter
 - -Direct Measurement Meter
- Portable ORP and pH Meter
- Fixed Continuous Meter
 - -ORP and pH Meter
 - -Direct Ion Sensor

Monitor, Control, Document **Demand-based Disinfection**

- Oxidation Reduction Potential (mV)
- Predicts Disinfection Potential
- Measures Disinfection Potential NOT ppm •
- Single Value Assessment of Disinfection ٠

PUBLICATION 8149

UNIVERSITY OF CALIFORNIA Ivision of Agriculture of Natural Resources

Oxidation-Reduction Potential (ORP) for Water Disinfection Monitoring, **Control, and Documentation**

TREVOR V. SUSLOW, Extension Research Speciality, Department of Wegelable Crops, University of California, Davis Large volumes of water are commonly used during the postarvess handling and processing of minimally processed fruits and vegetables. Economic considerations and watterwater discharge regulations make water recirculation a common practice in the industry. Fer paratices have the capacity of water recirculation in increase the potential risk. of foodborne illances by reality distributing a point source contam-nat (one lot, one bin, or even one pland) to noncommanisated produce. Disinfection of water is a critical step in minimizing the potential transmis-

http://ucgaps.ucdavis.edu or http://ucfoodsafety.ucdavis.edu

Treatment	pН	Free CI	ORP (mV)	% Spore Kill 15 secs	% Spore Kill 5 min
100 ppm Cl	8.2	100	698	0.9	55
100 ppm Cl	7.1	100	900	90	99.9
200 ppm Cl	9.8	201	742	20	99.9
200 ppm Cl	6.9	200	919	99	99.99
MWS	7.5	2.2	372	0.1	0.1
			[10	

	Flume Line Shed A	Flume Line Shed B	
Quality Turbidity (FAU)	3060	333	
Conductivity	1558 mS	721 mS	
рН	7.2	6.4	
Free CI	55	12	
ORP	420	825	
Total fecal coliform	log 5.4 CFU/100ml	< 0.9 log CFU/100ml	

Investment in Filtration and Sedimentation Makes All Recirculating Systems Perform Better

Flume Flocculant

Self-purging filtration

Take Home Messages

- The potential risks of waterborne contamination demand special attention for Quality and Safety
- Select disinfectant on microbial reduction objectives
- Weigh the pros and cons of each sanitizer to find the one that's right for your operation