Back to top

Department of Biology

Development and Physiology of the Stomatal Complex in Grasses

Water is an increasingly scarce resource for agriculture thus engineering plants that use water efficiently is a primary goal forscientists. A recent approach in achieving water-efficient crops is to breed or engineer plants that can rapidly open and close their stomata in changing environments (Lawson and Blatt 2014, Raven 2014). During the day, plants may become shaded or enjoy a sudden but transient increase in sunlight as sun angles change (or are reflected) or as clouds and/or other obstacles block the sun.

Identifying the Genes that Control Unisexual Flower Development in Maize

This proposal describes a next-generation sequencing (NGS)-based approach to identify genes that control unisexual flower development in Zea mays (maize). Maize develops separate male flowers in the tassel and female flowers in the ear (Klein etal., 2018). The development of unisexual flowers is important for hybrid crop production - separate tassel and ear flowers allow humans to very easily make controlled crosses (Phillips, 2010).  Many cereal crops related to maize, like rice and wheat, have unisexual flowers, hampering hybrid seed production (Kellogg, 2015).

Telling Pests from Non-pests: Species Delimitation in Highly Polyphagous and Abundant Armored Scale Insect Species Complexes

Armored scale insects (Hemiptera: Diaspididae) include many destructive pests of orchard crops, forestry, horticulture, and agriculture (Kennett et al., 1990), costing an estimated two billion dollars per year in the US (Miller & Davidson, 2005). They also have an extraordinary tendency to be invasive. As of 2005, the US had 132 species of diaspidids introduced from other countries (Miller et al., 2005), comprising fully 40% of the known US armored scale insect fauna. Of these, 85 (64%) were considered pests.

Gene Discovery for Improved Iron Nutrition in Maize

The micronutrient iron (Fe) is essential for photosynthesis, respiration, and many other processes, but Fe is only sparingly soluble in aqueous solution, making adequate acquisition by plants a serious challenge. Fe is a limiting factor for plant growth on approximately 30% of the world's arable lands. Furthermore, iron is highly reactive and, if over-accumulated, can cause cellular damage.

Pages

Subscribe to RSS - Department of Biology