Back to top

Department of Environmental Conservation

Effects of Fuels Reduction and Habitat Restoration on Native Bee Communities in Massachusetts Pitch-Pine Scrub Oak Barrens

Pitch pine-scrub oak barrens are a globally threatened, fire-dependent habitat that harbor numerous declining, rare, or imperiled plant and animal species. Threats to barrens include development, fragmentation, and fire exclusion which have reduced the extent of barrens communities to 10% of their original extent in western Massachusetts. Pitch pine-scrub oak (PPSO) forests are a significant contributor to the biodiversity of the Northeast.

Facilitating Responses to Extreme Weather Events

Climate change is expected to increase the frequency and extent of future flood events in New England. Such events pose a substantial threat to both human and natural systems. Not only do the direct effects of extreme flooding harm human and ecosystems, but human responses in the lead up to and the aftermath of these events (such as forest and debris removal, channel alteration and armoring, and gravel mining) also create substantial disturbances. The effect of these human responses may be to alleviate or to exacerbate ecological damage and consequently the impacts of future flood events.

Faded Green? A Post Occupancy Study of Green Homes

Sustainable design and construction techniques for the United States housing sector are the most economically-effective strategies for preserving natural resources, reducing greenhouse gas emissions, and creating future energy security. More than 90-percent of the housing built in the Northeast is constructed from wood harvested from forests in New England. In the United States, 55-percent of timber production goes into the production of buildings.

Forests as carbon sinks, exploring the viability of carbon sequestration

Carbon dioxide is a greenhouse gas that contributes to global warming or climate change. One way to reduce the effect of carbon dioxide acting as a greenhouse gas is to accumulate it in trees and forests. Trees naturally take in carbon dioxide as part of growth, and turn it into wood. Trees and forests act as a sink to collect and hold carbon and as a result are thought of as part of the answer to mitigate increasing greenhouse gases in the atmosphere and increased global warming. Roughly 55% of all forests in the United States are privately owned and 92% of these owners are families.

Hydropedology: Genesis, Properties, and Distribution of Hydromorphic Soils

Researchers will evaluate the potential use of field indicators of hydric soils to characterize wetland hydroperiods with respect to frequency, depth, and duration of water table fluctuations; test the effectiveness of proposed hydric soil indicators to identify 'problem hydric soils'; test monitoring protocols used to identify reducing conditions to determine if they are effective within a range of soil conditions within the Northeast; and investigate the hydraulic properties of hydromorphic soils with episaturation.

Improving Black Bear Management Through Stable Isotope Assessment of Bear Food Habits in the Northeast

Managing conflict between people and black bears is a significant challenge confronting wildlife professionals. In addition, the frequency of conflict is expected to rise as black bear and human populations grow. The challenge is heightened by the species’ large geographic range, acceptance of human disturbance, and propensity to exploit anthropogenic food sources such as garbage cans, bird feeders, apiaries, fruit orchards, and agricultural fields.

Linking ecology and evolution for the conservation of native brook trout in fragmented Massachusetts streams

The dendritic nature of freshwater streams presents unique conservation concerns. Linear streams are prone to fragmentation that can reduce or completely prevent animal migration. Understanding the evolutionary consequences of habitat fragmentation is critical for predicting population response and ultimately the likelihood of population persistence. The goal of this project is to gain further understanding of the genetic and evolutionary consequences of stream fragmentation.

Low-Value Wood in Bamboo Reinforced Glulam

Approximately 60% of the total land area in Massachusetts is forested. Most of this land is privately owned, and often overcrowded with low-value species. In the absence of a market for these trees, the cost of thinning exceeds the value of the timber produced, resulting in minimal to no forest management. Value-added products present a recognized way of marketing these trees while both defraying the costs of thinning and maintaining the economic viability of private forestland.

Modeling Landscape-scale Invasion Risk in Western Massachusetts Forests Using Remote Sensing

Invasive plants in forest understories in Massachusetts threaten native ecosystems and working forests. This research will use satellite remote sensing to map three understory invasive species (buckthorn, honeysuckle, and barberry) in western Massachusetts. Occurrence maps will be compared to geology, topography, and land use to better identify correlates of invasion across the landscape and create maps identifying high invasion risk.

Modeling Risk of Plant Invasions in Massachusetts and Surrounding States Under Current and Future Climate Conditions.

Invasive plants lead to the loss of crop revenue in agricultural systems, damage native habitats and wildlife populations, and alter ecosystem services such as nutrient cycling. This project will map the abundance of 13 problematic invasive plants across the northeastern United States by collecting expert knowledge. We will then predict invasion risk based on current climactic suitability, as well as future risk associated with climate change.

Pages

Subscribe to RSS - Department of Environmental Conservation