Slide 1

Managing Plant Nutrition of Greenhouse **Ornamentals** Douglas Cox UMass Extension & Stockbridge School of Agriculture

Slide 2

Common Nutrient Problems Of Spring **Greenhouse Crops**

- Too much or too little fertilizer?
- pH problem Iron deficiency on petunia and pansy.
- pH problem Iron/manganese toxicity on some species.
- Water quality as it affects nutrient problems.

Slide 3

Fertility & pH for Vegetative Annuals

	Low pH	Medium pH	High pH
	5.5-5.8	5.8-6.2	6.2-6.5
Low fertility	Snapdragons	Coleus	
150-200 ppm		New Guinea impatiens	
		Double impatiens	
		Trailing impatiens	
Medium	Scaveola	Bracteantha	Argyranthemum
fertility	Bacopa	Plectranthus	Brachyscome
200-250 ppm		Diascia	Osteospermum
		Sanvitalia	
		Verbena	
High fertility	Calibrachoa		
250-300 ppm	Petunia		

Slide 4

Plant	pН	Why?		
Most bedding plants	5.4-6.8	pH tolerant		
American marigolds	6.0-6.8	Prevent Fe/Mn toxicity		
Celosia	6.0-6.8	Prevent Fe/Mn toxicity		
Seranium	6.0-6.8	Prevent Fe/Mn toxicity		
Dianthus	6.0-6.8	Prevent Ca deficiency & ammonium toxicity		
Pansy	5.4-5.8	Prevent B & Fe deficiencies		
Petunia	5.4-5.8	Prevent B & Fe deficiencies		
lalvia	5.4-5.8	Prevent B deficiency		
inapdragon	5.4-5.8	Prevent B & Fe deficiencies		
/inca	5 4-5 8	Prevent B & Fe deficiencies		

Slide 5

Slide 6

Calibrachoa Dianthus Nemesia Petunia Scaveola Snapdragon Verbena

Slide 7

Preventing Iron Deficiency

- Target pH 5.5-5.8 (below 6.5).
- Acidic water-soluble fertilizers (15-15-15, <u>15-</u>16-17, 20-10-20, 21-7-7).
- Acid injection with alkaline water.
- Use supplemental or corrective iron chelate drench.

Iron Chelate Fertilizer

- Apply iron chelate every 2-3 weeks or at every watering. Sprint 330 (DTPA) is
- effective up to pH 7, higher pHs.
- Sprint 138 (EDDHA) is effective above pH 7.

Slide 9

Water pH, Alkalinity & Iron Deficiency

- pH 7-8, alkalinity below 100 mg CaCO₃ Iron deficiency? Probably not. Why? Growing mix and fertilizer are the major influences on pH.
- pH 7-8, alkalinity well above 100 mg CaCO₃ Iron deficiency? Yes, for susceptible species. Why? "Liming" effect of water may be great enough to raise pH.

Slide 10

I. Match Fertilizers to Water Quality

Water alkalinity test (mg CaCO ₃)	Fertilizer analysis	% Acidic nitrogen (ammonium & urea)	Potential reaction A-acidic or B Basic (CCE)
300	21-7-7	100%	A 1560
200	20-10-20	40%	A 429
100	17-5-17	20%	B 0
50	15-0-15	13%	B 420

Slide 11

Iron/manganese Toxicity

- Geraniums, marigolds, celosia, and impatiens are very susceptible to iron/manganese toxicity.
- Plants susceptible to toxicity are called "iron efficient" or "geranium group". Symptoms occur at pH<6.0.
- The toxicity is often called "bronze speckle" disorder.

Slide 12

Causes of Bronze Speckle

- Low growth medium pH.
- Use of acidic fertilizers.
- Inappropriate use of acid injection.
- Use of supplemental micronutrient fertilizers.

Follow the "Iron Out" program from UNH.

Water pH, Alkalinity & Fe/Mn Toxicity PH 7-8, alkalinity below 100 mg CaCO₃

Problem? By itself, probably no effect. Why? Growing mix and fertilizer are the major influences on pH.

 pH 7-8, alkalinity well above 100 mg CaCO₃
 Problem? No, irrigation with this water might help prevent toxicity.

Why? "Liming" effect of water may be great enough to raise pH.

Slide 14

Fit Detential Nutrient Problems Due Detention Problem Solution Marcine Calcontaining fertilizers Detention Inight boron (>0.5 ppm) Use Ca-containing fertilizers High boron (>0.5 ppm) Use Ca-containing fertilizers High sodium (>50 ppm) Use Ca-containing fertilizers High sodium (>50 ppm) Use Ca-containing fertilizers

Slide 15

Slide 16

Using Organic Greenhouse Fertilizers

The ideal approach to using organic fertilization is to try the "3-legged stool". Providie nutrients from several organic sources to prevent nutrient deficiency and achieve normal growth of greenhouse plants.

Growth medium components (especially compost).
 A granular organic fertilizer mixed in the growth medium preplant.

3. Postplant application of liquid organic fertilizer.

Slide 17

Slide 18

Promising Organic Fertilizers

Fertilizer	Туре	Nutrient sources
Nature's Source 3-1-1	Liquid	Oilseed extract.
Eco-Vita 7-5-10 (up to 100 day release)	Granular	Feather meal, fermented sugar beet and sugar cane molasses, bone meal, soybean meal, and cocoa shell meal.
Sustane 8-4-4 (45 day slow-release)	Granular	Composted turkey litter, feather meal and potassium sulfate.

Slide 20

Slide 21

Image: A state of the state

Slide 22

Slide 23

Take Home Tips on Organics

- 1. For best results use a liquid and a granular fertilizer in combination.
- 2. Do a trial before applying to all plants.
- Best use is for short-term crops of less than 6 weeks duration. Reduce or stop use before growth differences or chlorosis becomes apparent.

Slide 24

Nutrient Problems **Zonal Geraniums** Fe/Mn toxicity due to low pH (top). High soluble salts due to excess fertilizer versus growth rate (bottom). Check roots for disease!

Slide 26

Factors Affecting the Success of a Fertilizer Program

- Fertilizer level (ppm).
- Fertilizer type.
- Frequency of application.
- Volume of fertilizer solution applied.
- Clear water irrigations and leaching.
- Environment and plant growth rate.
- Interactions.

Slide 27

Slide 28

Fertilizer Strategy **Zonal Geraniums**

- pH 6.2-6.5. pH can drop suddenly.
- Begin fertilizing shortly after potting with 200 ppm. Monitor pH and EC regularly. Continue 200-250 ppm to finish.
- Make an application of liquid limestone?
- Use Cal-Mag 15-5-15, 15-5-25, 15-0-15 or other low acidity fertilizers. Don't go too long with 0 P fertilizers!