STEM ED/CHM Nanotechnology at UMass Amhers \dagger

A Teacher's Guide for the Oleic Acid Thin Film Activity

The Nanoscale Context: This activity provides an opportunity for students to apply an understanding of relationships among area, depth, and volume as they calculate the nanoscale thickness of a thin layer of oleic acid.

The STEM Context: This activity can be integrated into a study of measurement systems, miscibility of liquids, and the characteristics of chemical bonds.

National Science Education Learning Standards Examples

- Science as Inquiry Standard; Grade 5-8 (Page 145): "Use appropriate tools and techniques to gather, analyze, and interpret data."
- Physical Science Content Standard B; Grades 9-12 (Page 179): All students should develop an understanding that "The physical properties of compounds reflect the nature of the interactions among its molecules......"
Massachusetts Science and Technology/Engineering Learning Standards Examples
- Physical Science; Grades 6-8 (Page 67): "Recognize that the measurement of volume and mass requires understanding of the sensitivity of measurement toolsand knowledge and use of significant digits."
- Chemistry, High School (page 70): "Identify how hydrogen bonding in water affects a variety of physical, chemical, and biological phenomena......."
Massachusetts Mathematics Learning Standard Example
- Measurement; Grades 7-8 (Page 65); "Demonstrate and understanding of the concepts and apply formulas and procedures for determining measures......"
- Measurement; Grades 9-10 (Page 75); "Describe the effects of approximate error in measurement and rounding on measurements and on computed values from measurements."

Materials for the Activity

- Isopropyl alcohol can be used as a solvent rather than methyl or ethyl alcohol. Caution should be taken since alcohols are flammable.
- Oleic acid may be purchased from sources that include: Sargent-Welch catalog \#WLC94631-06; \$14.60 per half liter.
- Lycopodium powder was once used for the activity but is an allergen for some students. Chalk dust, finely ground pepper, baby power can also be used.
- Circular flat trays that have a diameter of approximately 40 cm are available from suppliers such as: $h t t p: / / f o o d s e r v i c e . c h e f 2 c h e f . n e t . ~$
- Pipettes or 10 mL graduated cylinders can be used to measure 1.0 mL of liquid.
- Larger graduated cylinders (e.g., 25 ml) are needed to make solutions.
- Medicine droppers are needed to determine the number of drops of oleic acid solution in 1.0 mL of solution.
- Medicine dropper bottles can also be used to make and store oleic acid solutions.

Sample Results

- Step 1: The volume fraction = $1 / 25$
- Step 2:0.04 cm^{3}
- Step $3: 0.04 \mathrm{~cm}^{3} / 25=0.0016 \mathrm{~cm}^{3}$
- Step 4: An example would be; 40 drops $=1.0 \mathrm{~cm}^{3}$.
- Step 5: If a group determined that 40 drops of the second solution of oleic acid had a volume of $1.0 \mathrm{~cm}^{3}$, then $0.0016 \mathrm{~cm}^{3} / 40=0.00004 \mathrm{~cm}^{3}$.
- Step 6: If that group estimated that average diameter their thin film of oleic acid was 14.50 cm , then the average radius is 7.25 cm ,
- Step 7: Area $=3.14 \times R^{2}$ For example: The area of that film was $165.05 \mathrm{~cm}^{2}$
- Step 8: If Volume $=$ Area \times Depth; Then: Depth $=$ Volume $/$ Area. The thickness of the example group's film would be $2.42 \times 10^{-7} \mathrm{~cm}$.
- Step 9: $2.42 \times 10^{-7} \mathrm{~cm}=2.42 \times 10^{-9} \mathrm{~m}=2.42$ nanometers
- Question 1: Some students will comment in the accuracy of their measurements. It may also be true that the oleic acid formed a layer that was several molecules deep.
- Question 2: Some student will suggest that repeated trials be conducted.
- Question 3: An example would be as follows:

Calculate the number of drops of oleic acid in a liter of pure oleic acid. Set up the proportion: 1.0 drop $/ 0.00004 \mathrm{ml}=x$ drops $/ 1000 \mathrm{~mL}$. For this example group, there would be $25,000,000\left(2.5 \times 10^{7}\right)$ drops per liter. As a result, the area of the thin film would be 2.5×10^{7} times larger that the area from the activity.

For this example group, $165.05 \mathrm{~cm}^{2} \times\left(2.5 \times 10^{7}\right)=4.13 \times 10^{9} \mathrm{~cm}^{2}$. There are $10,000 \mathrm{~cm}^{2}$ $\left(1.0 \times 10^{4}\right)$ in a square meter. The area would equal $4.13 \times 10^{5} \mathrm{~m}^{2}$. There are $1 \times 10^{6} \mathrm{~m}^{2}$ in a square kilometer. Therefore, based on this group's results, the area of a thin film of 1.0 liter of oleic acid would equal 0.413 square kilometers.

Examples of Accompanying Activities

- Some students benefit from an activity that illustrates relationships among volume, area, and depth of a structure. This can be accomplished with materials like pizza dough.
- Soap is made in the saponification process when oils or fats react with sodium hydroxide. This activity requires the use of sulfuric acid and a caustic hydroxide.
- Research projects can include an investigation into the impact of thin films on the exchange of gasses between a body of water and the atmosphere.
-

Web sites that provide information about this oleic acid films include:

- http://jxb.oxfordjournals.org/cgi/content/abstract/39/12/1679
- www.chymist.com/size\ fatty\ acid.pdf
- http://www.chemheritage.org/educationalservices/pharm/tg/antibiot/activity/size.htm
- http://www.sargentwelch.com/pdf/opinstr/72701-81.pdf
- http://chem.lapeer.org/Chem1Docs/OleicAcidLab.html
- http://www.gpc.edu/~ddonald/chemlab/oleicavagno.html

Web sites with information about Benjamin Franklin's observations of a thin film include:

- http://www.nyas.org/ebriefreps/main.asp?intSubsectionID=2071
- www.benfranklin300.com/_etc_pdf/Dutch_Joost_Mertens.pdf
- http://www.historycarper.com/resources/twobf3/letter3.htm

