STEM ED/CHM Nanotechnology at UMass Amhers $\dagger$

> Oleic Acid Thin Film Worksheet (with hints for doing the calculations)

| Step 1 | Write the fraction of oleic acid in $1.0 \mathrm{~cm}^{3}$ of the <br> first solution. Put the volume of oleic acid in the <br> numerator. Put the total volume of the solution in <br> the denominator. |  |
| :--- | :--- | :--- |
| Step 2 | Change the fraction of oleic acid from Step 1 to a <br> decimal form. Divide the numerator in Step 1 by <br> the denominator in Step 1. |  |
| Step 3 | Determine the volume of oleic acid in $1.0 \mathrm{~cm}^{3}$ of <br> the second solution. Divide your answer to Step 2 <br> by the total volume of the second solution. |  |
| Step 4 | Record the number of drops in $1.0 \mathrm{~cm}^{3}$ of the <br> second solution. | Determine the volume of oleic acid in one drop of <br> the second solution. (Divide the answer to Step 3 <br> by the number of drops recorded in Step 4.) |
| Step 6 | Record the average radius of the circular area of <br> the thin film (in centimeters). The average radius <br> is half of the average diameter. |  |
| Step 7 | Calculate the area of the thin layer of oleic acid <br> (in square centimeters). Use the formula for the <br> volume of a circle. Area = $(\pi) \times R^{2}$ |  |
| Step 8 | Calculate the thickness (depth) of the thin layer <br> of oleic acid (in centimeters). Use the formula for <br> the depth of a cylinder: Depth = Volume / Area |  |
| Step 9 | Convert the thickness of the layer of oleic acid <br> from centimeters to meters. Remember that a <br> centimeter is 2 Powers of Ten smaller than a <br> meter. |  |

