Overview

- Water Needs
 - Plant factors
 - Environmental factors

- Production Impacts
 - Growing media
 - Containers
 - Greenhouse

- Irrigation Considerations
 - Manual
 - Automated

Why is Irrigation so Challenging?

- Plants have different water requirements
- Changing environmental conditions
- Different container sizes
- Different types of containers
- Different media
- Plant canopies
- Location of plant in greenhouse
- Variability of irrigation systems
- Irrigation uniformity and efficiency

Plant Water Needs

- Herbaceous plants can be 70-95% water
- Woody plants 45-50% water

Why is Water a Concern?

- Growing media
 - Maintain good properties
 - Water holding ability
 - Nutrient movement
- Fertilizer salt build up
 - Leaching

Why is Water a Concern?

- Cooling
- Uptake of CO₂ (stomata open)
- Plant stability
- Cell enlargement
- Solvent for various chemicals
- Proton source
- Reactant
- Water, sugars, nutrients
Plant Factors

- Plant size/age of plant
 - Rooting depth
- Leaf area/canopy
 - Number of leaves
 - Size of leaves

Environmental Factors

- Water potential gradient
 - Influenced by humidity
- Vapor pressure gradient
 - Difference in vapor pressure between air inside leaf and air outside
 - Drives transpiration
 - Influenced by temperature

- Solar radiation
- Wind
- Temperature
- Relative humidity (amount of water vapor in the air)
 - goes down as temperature goes up
Production Impacts

- Growing Media
- Containers
- Greenhouse Environment

Growing Media

- Anchor the plant
- Lightweight
- Hold water and nutrients
- Provide aeration

Impact of Growing Media

- Variability in:
 - Size and distribution of particles, pore space, bulk density
 - Water holding capacity
 - Infiltration
 - Drainage

Particles and Pore Space

- Particle size and distribution determines pore space
- Pore space determines amount of water and air in the media

Porosity

- Total Porosity—Total volume of pore space available
- Air filled porosity: Volume of a media filled with air after a fully saturated media drains due to gravity
 - Aka — “air space”

Water Holding Capacity—Volume of media filled with water a fully saturated media drains due to gravity
 - Available and unavailable water remains
 - Container Capacity

Bulk Density

- Weight of the dried media per volume of media particles (g/cm³ or g/mL)
- Varies based on the density of the actual particles
- Impacts “lightness” of media
- Can vary from container to container depends on how pots are filled
 - Compaction can increase bulk density
 - Compaction reduces water holding capacity
Infiltration and Drainage

- **Infiltration rate** - rate at which water enters the media

- **Water storage and drainage**: 3 primary forces acting on water in media
 - Gravity
 - Adhesion – leads to absorption of water on media particles
 - Cohesion – what causes water molecules to be attracted to each other

Impact of Growing Media

- Larger particles provide drainage
- Finer textures hold more water

Impact of Growing Media

- Larger particles provide drainage
- Finer textures hold more water

Media Components

- Peat*: high WHC, lightweight
- Coir**: high WHC, lightweight
- Bark: varies with size; porosity, WHC, drainage
- Vermiculite: WHC, lightweight
- Perlite: drainage, lightweight
- Sand: drainage, high bulk density
- Rice hulls: drainage

*Hydrophobic
**Not hydrophobic

Container Impacts

- Sponge comparison
Container Impacts
- Zone of saturation
- Depends on media, NOT container

Container Type
- Plastic
- Biodegradable
- Compostable

Greenhouse Impacts
- Interference
- Air movement

Irrigation in Greenhouse Production
- Traditionally based on the idea that it is better to err on the side of too much
- Results:
 - Frequent irrigation
 - Over-irrigation
 - Fertilizer leaching

Determining When to Irrigating Plants
- When water stress symptoms occur
 - Need to be familiar with symptoms for all crops
 - Risk impacting growth/plant quality
- Gravimetric/weight
 - Need to have experience
 - Need to have knowledge of all media being used
- Timed
 - Automated or by hand
 - Not in response to plant needs or environmental conditions
- Sensors/data
 - Soil moisture, light intensity, air temperature
 - Can be used to automate or make decisions
Manual Watering

Pros
- Less initial investment in equipment
- Grower looks at every plant and can adjust per plant needs

Cons
- Requires experience to be done well
- Labor intensive
- Can be wasteful
- Can be inefficient
- Uniformity depends on applicator
- Wetting of foliage can be problematic

Manual Watering Best Practices
- Don’t rely on looking – pick up a plant!
- Position of the watering wand
 – Close to media surface
- Water pressure – gentle stream
- Be consistent!
 – Have a count
- Check for thorough wetting of media

Automated Irrigation

Pros
- Reduced labor
- Reduced potential for human error
- More compatible with recycling water
- More consistent
- Depending on systems can control based on measured parameters

Cons
- Higher initial equipment investment
- Technology can require adjustment of existing systems

Automated Irrigation

- Drip
- Ebb-and-Flood Systems or capillary mats
- Overhead
- Boom

Drip Irrigation

- Pressure compensated emitters
- Spray stakes
- Drip line
Drip Irrigation

Pros
- Directed applications
- Efficient
- Foliage remains dry
- Can vary volume by emitter or time

Cons
- Can need to adjust emitter/time/amount of tubing per crop
- On ground can be a tripping issue
- What to do with tubes when plants pulled

Ebb-and-Flood

Pros
- Uniform applications
- Foliage remains dry
- Water recycled

Cons
- Floors require alteration of existing structure
- Contain and treat water
- Water spread diseases

Overhead Sprinkler

Pros
- Container size and placement easily changed
- Spray pattern can be adjusted

Cons
- Much water can be lost between plants
- Wetting of foliage
- Can be impacted by greenhouse structures
- If not designed well can have uniformity issues

Boom

- Directed spray
Boom

- Mist

Pros
- Technology allows for high level of control
- Directed applications

Cons
- Cost
- Can require changes in infrastructure
- Some wetting of foliage

Mist/Fog

- Propagation/plugs
- Fine mist created by fan

Weather Station Sensors

- Estimate evapotranspiration

Soil moisture sensors

- Tensiometers – measure soil suction (indicates how easy it is for plants to remove water from media)
- Capacitance probes – measure actual water content
- Placement important: root zone
Sensor Controlled Irrigation

- When connected to data loggers or computers data can be collected continuously
- Automate irrigation
 - Application of water only when the media is below a setpoint
 - More efficient irrigation applications
 - In response to plant water needs

Sensors

- Placement of sensors is important
- Representative/average data

Consequences of Poor Water Management

- Over-irrigation
 - Water loss
 - Nutrient leaching
 - Additional fertilizer applications
- Runoff
 - Environmental impact
 - Laws and regulations
 - $$$

Consequences of Poor Water Management

- Reduction in plant quality/health
 - Over-irrigation:
 - Root rot, algal growth, nutrient deficiencies
 - Under-irrigation:
 - Wilt, reduced growth
 - Hydrophobic media, channeling
 - Wet foliage:
 - Foliar diseases

Increasing Irrigation Efficiency

- Group plants by water needs (high, medium, low water use)
- Consolidate plants
Increasing Irrigation Efficiency

• Basing Irrigation Decisions on:
 – Environmental conditions
 – Media water status
 – Changing plant needs
• Improving applications
 – Drip/micro
 – Cyclic
• Reduce leaching
 – Leaching fraction no more than 20%

Increasing Irrigation Efficiency

• Inspecting systems regularly
 – Irrigation audit
 • Uniformity is key
 – Reduce variability
 – Replace nozzles, check for nozzle uniformity
 – Check for clogs or build-up
 – Check height of overhead irrigation (too high = increase likelihood of drift)
 – Assess container spacing

Tips To Properly Water

• Don’t rely on the appearance of the media surface
 – Drying begins at the surface
 – Check the roots and media

Tips To Properly Water

• Whenever possible apply water to the media not the foliage
 – Use a uniform gentle flow
 – Water slowly – allow time for infiltration
• Bring plants back to container capacity
• Allow some drying between irrigation events

Tips To Properly Water

• When (Not) to Water
 – Avoid watering when evapotranspiration is high (midday)
 – Avoid evening irrigation to avoid wet foliage
• Avoid dripping from overhead hanging baskets, especially with newly potted plants
• Water evenly – don’t reach for that last pot
 – These plants usually end up underwatered

Consider Making Guidelines

• Make irrigation guidelines based on what information you have available
 – Visual – look of media (plant pulled out of pot)
 – Weight
 – Media water content
 – Evapotranspiration
• Cloudy vs sunny
• Summer vs winter
• Humid vs dry
Conclusions

Plant Impacts
- Age, genus, transpiration rate
- Leaf area/plant canopy

Environmental Considerations
- Change on a day to day basis
- Drive transpiration

Production Impacts
- Growing media components: WHC, drainage
- Container size and type
- Greenhouse structures

Conclusions

When to Irrigate
- Stress symptoms, weight, timed, based on information
- Experience

Manual Irrigation
- Someone looks at every plant
- Variability by applicator

Automated Irrigation
- Reduced labor, generally increased efficiency and uniformity
- Cost, technology

Conclusions

Improving Efficiency
- Inspect irrigation system
- Uniformity is key
- Avoid watering non-plant areas

Improve Applications
- Cyclic applications
- Directed applications
- Group plants by water requirements

Irrigation Tips
- When pots feel light not when it looks dry
- No matter what type of irrigation – be consistent!

Questions?