

Cooling

Turgor Pressure

Plant stability

Proton source

Reactant

Cell enlargement

Plant Water Needs

- Herbaceous plants can be 70-95% water
- Woody plants 45-50% water

Plant Factors

- Plant size/age of plant
 - Rooting depth
- Leaf area/ canopy
 - Number of leaves
 - Size of leaves

Plant Factors

- Plant size/age of plant
 - Rooting depth
- Leaf area/ canopy
 - Number of leaves
 - Size of leaves
- Transpiration rate
- Availability of water

Environmental Factors • Water potential gradient – Influenced by humidity • Vapor pressure gradient

- Difference in vapor pressure between air inside leaf and air outside
- Drives transpiration
 Influenced by temperature

Low water potential

Production Impacts

- Growing Media
- Containers
- Greenhouse Environment

Growing Media

- Anchor the plant
- Lightweight
- Hold water and nutrients
- Provide aeration

Impact of Growing Media

- Variability in:
 - Size and distribution of particles, pore space, bulk density
 - Water holding capacity
 - Infiltration
 - Drainage

Particles and Pore Space

- Particle size and distribution determines pore space
- Pore space determines amount of water and air in the media

Porosity Total Porosity- Total volume of pore space available Air filled porosity: Volume of a media filled with air after a fully saturated media drains due to gravity Aka = "air space" Water Holding Capacity- Volume of media filled with water a fully saturated media drains due to gravity Available and unavailable water remains

Container Capacity

Bulk Density Weight of the dried media per volume of media particles (g/cm³ or g/mL) Varies based on the density of the actual particles – Impacts "lightness" of media Can vary from container to container depends on how pots are filled – Compaction can increase bulk density – Compaction reduces water holding capacity

Infiltration and Drainage

- Infiltration rate- rate at which water enters the media
- Water storage and drainage:
 - 3 primary forces acting on water in media
 - Gravity
 - Adhesion leads to absorption of water on media particles
 - Cohesion what causes water molecules to be attracted to each other

Impact of Growing Media

Larger particles provide drainageFiner textures hold more water

Irrigation in Greenhouse Production

- Traditionally based on the idea that it is better to err on the side of too much
- Results:
 - Frequent irrigation
 - Over-irrigation
 - Fertilizer leaching

Manual Watering

Pros

- Less initial investment in equipment
- Grower looks at every plant and can adjust per plant needs

ConsRequire

- Requires experience to be done well
- Labor intensiveCan be wasteful
- Can be inefficient
- Uniformity depends on
- applicator
- Wetting of foliage can be problematic

Manual Watering Best Practices

- Don't rely on looking pick up a plant!
- Position of the watering wand
 Close to media surface
- Water pressure gentle stream
- Be consistent!
 Have a count
- · Check for thorough wetting of media

Automated Irrigation

Pros

- Reduced labor
- Reduced potential for human error
- More compatible with recycling water
- More consistent
- Depending on systems can control based on measured parameters

Cons

- Higher initial equipment
 investment
- Technology can require adjustment of existing systems

Automated Irrigation

- Drip
- Ebb-and-Flood Systems or capillary mats
- Overhead
- Boom

Drip Irrigation

- Pressure compensated emitters
- Spray stakes
- Drip line

Drip Irrigation	
Pros	 Directed applications Efficient Foliage remains dry Can vary volume by emitter or time
Cons	 Can need to adjust emitter/time/amount of tubing per crop On ground can be a tripping issue What to do with tubes when plants pulled

Sensor Controlled Irrigation When connected to data loggers or computers data can be collected continuously Automate irrigation Application of water only when the media is below a setpoint More efficient irrigation applications In response to plant water needs

Sensors

- Placement of sensors is important
- Representative/average data

Consequences of Poor Water Management

- Over-irrigation
 - Water loss
 - Nutrient leaching
 - Additional fertilizer applications
- Runoff
- Environmental impact
- Laws and regulations
- \$\$

Consequences of Poor Water Management

- Reduction in plant quality/health
 - Over-irrigation:
 - Root rot, algal growth, nutrient deficiencies
 - Under-irrigation:
 - Wilt, reduced growth
 - Hydrophobic media, channeling
 - Wet foliage:
 - foliar diseases

Increasing Irrigation Efficiency

- Group plants by water needs (high, medium, low water use)
- Consolidate plants

Increasing Irrigation Efficiency

- Basing Irrigation Decisions on:
 - Environmental conditions
 - Media water status
 - Changing plant needs
- Improving applications
 - Drip/micro
 - Cyclic
- Reduce leaching
 - Leaching fraction no more than 20%

Increasing Irrigation Efficiency Inspecting systems regularly Irrigation audit Uniformity is key Reduce variability Replace nozzles, check for nozzle uniformity Check for clogs or build-up irrigation (too high = increase likelihood of drift) Assess container spacing

Tips To Properly Water

- Don't rely on the appearance of the media surface
 - Drying begins at the surface
 - Check the roots and media

Tips To Properly Water

- Whenever possible apply water to the media not the foliage
 - Use a uniform gentle flow
 - Water slowly allow time for infiltration
- · Bring plants back to container capacity
- · Allow some drying between irrigation events

Tips To Properly Water

- When (Not) to Water
 - Avoid watering when evapotranspiration is high (midday)
 - Avoid evening irrigation to avoid wet foliage
- Avoid dripping from overhead hanging baskets, especially with newly potted plants
- Water evenly don't reach for that last pot – These plants usually end up underwatered

Consider Making Guidelines

- Make irrigation guidelines based on what information you have available
 - Visual look of media (plant pulled out of pot)
 - Weight
 - Media water content
 - Evapotranspiration
- Cloudy vs sunny
- · Summer vs winter
- · Humid vs dry

Conclusions			
Plant Impacts	 Age, genus, transpiration rate Leaf area/plant canopy 		
Environmental Considerations	Change on a day to day basisDrive transpiration		
Production Impacts	 Growing media components: WHC, drainage Container size and type Greenhouse structures 		

