National Turfgrass Evaluation Program (NTEP) 2010 Perennial Ryegrass Variety Trial

2011 Progress Report

J. S. Ebdon, Ph. D., and W. T. Griffin

The National Turfgrass Evaluation Program sponsors variety trials throughout the continental U. S. and Canada using uniform testing procedures. The objective is to evaluate and identify cultivars (varieties) that perform best under the different and diverse environmental conditions (climatic, soil, and cultural) associated with the many NTEP locations cooperating as part of the program. NTEP publishes annual reports that summarize the results collected at the 25 or more NTEP sites such as the University of Massachusetts. The NTEP data is made available on line at www.ntep.org and is used by turfgrass specialist and practitioners to help recommend and select varieties that grow best at their specific location. NTEP evaluates turfgrasses adapted to both cool-season (northern latitudes) and warm-season (southern latitudes) areas.

The 2010 NTEP Perennial Ryegrass Test was seeded from October 12 to 18, 2010. There are 88 varieties represented in the test including 3 replications for each entry (cultivar) for a grand total of 264 plots. Turfgrass quality ratings (1 to 9 scale, $9=$ best) will be taken throughout the growing season over the next 5 -year period. Wear will be applied in the fall of 2011 and each year of the 5 year test period. No data will be available until the 2012 reporting year. Percent cover during establishment is shown in Table 1 along with turfgrass quality recorded in June 2011.

Cultural Practices:

- Mowing height: 0.5 inches with reel mower, 3 mowings per week.
- Fertility: $3.5 \mathrm{lbs} \mathrm{N} / 1,000 \mathrm{ft}^{2} /$ year.
- Irrigation: to prevent drought stress.
- Fungicides: preventative.

RIVER ROAD
TURF- FARM FENCE
2010 NATIONAL TURFGRASS EVALUATION PROGRAM PERENNIAL RYEGRASS VARIETY TRIAL
Block A
2010 NATIONAL TURFGRASS EVALUATION PROGRAM PERENNIAL RYEGRASS VARIETY TRIAL

－	－	\pm	¢	
∞	\bigcirc	\cdots	$\mathfrak{6}$	
N	$\bar{\sim}$	m	\bigcirc	∞
\bigcirc	n	¢	\bigcirc	\bigcirc
へ	in	$\bar{\infty}$	∞	T
∞	\cdots	\cdots	2	$\stackrel{\infty}{+}$
ल	\％	in	\ddagger	¢
∞	in	\cdots	N	¢
	$\stackrel{\infty}{\square}$	d	2	\because
－	$\stackrel{\sim}{\sim}$	\cdots	寸	$\stackrel{\square}{\sim}$
©	\cdots	\＆	N	
q	$\underset{\sim}{*}$	∞	∞	N
\checkmark	m	\pm	$\stackrel{\infty}{\sim}$	5
\Varangle	\Varangle	\pm	i	ก
	in	m	∞	\cdots
	－	－	\％	\bigcirc
$\stackrel{\infty}{\circ}$	m	$=$	ล	∞
$\stackrel{\sim}{*}$	へ	\cdots	¢	in

2010 NATIONAL TURFGRASS EVALUATION PROGRAM PERENNIAL RYEGRASS VARIETY TRIAL

2010 NATIONAL TURFGRASS EVALUATION PROGRAM PERENNIAL RYEGRASS VARIETY TRIAL

	\cdots		$\stackrel{\sim}{\infty}$	
c	in	$\stackrel{\sim}{\sim}$	${ }^{2}$	
\％	\checkmark	－	in	\pm
	m		T	m
	n	\cdots	$\underset{\sim}{*}$	N
	\bigcirc	\％	8	\because
\propto	\bigcirc	¢	\cdots	${ }^{\circ}$
	in	in	\bar{m}	\％
	ス	¢	\bigcirc	N
$\stackrel{\circ}{\circ}$	\bigcirc	n	\％	$?$
N	へ	∞	\％	a
in	\cdots	\cdots	2	フ
m	\pm	ニ	9	∞
\varnothing	0	∞	$\stackrel{\sim}{\sim}$	in
	∞	∞	$\bar{\infty}$	F
	N	N	$\stackrel{\circ}{\circ}$	N
∞	산	N	in	\bigcirc
	in	in	\otimes	$\bar{\sim}$

Table 1. 2010 NTEP Perennial Ryegrass Test: Percent cover and turfgrass quality (TQ).

Entry Number Name \dagger	Percent cover				June TQ
	April	May	June	Average	1 to 9
65 IS-PR 492	60.0	93.3	98.3	83.9	6.67
29 PPG-PR 138	60.0	95.0	98.3	84.4	6.33
34 PPG-PR 165	70.0	93.3	96.7	86.7	6.33
54 Mach I	50.0	88.3	95.0	77.8	6.33
56 RAD-PR55R	46.7	91.7	95.0	77.8	6.33
83 GO-PR60	53.3	90.0	95.0	79.4	6.33
2 CL 11601	66.7	96.7	98.3	87.2	6.00
16 Insight	50.0	86.7	95.0	77.2	6.00
22 PPG-PR 121	53.3	91.7	95.0	80.0	6.00
28 PPG-PR 137	66.7	93.3	98.3	86.1	6.00
33 PPG-PR 164	56.7	85.0	93.3	78.3	6.00
60 IS-PR 479	46.7	85.0	91.7	74.4	6.00
62 IS-PR 488	56.7	91.7	96.7	81.7	6.00
64 IS-PR 491	50.0	88.3	95.0	77.8	6.00
1 Rinovo	56.7	86.7	93.3	78.9	5.67
4 CL 11701	53.3	86.7	98.3	79.4	5.67
7 Uno	50.0	88.3	95.0	77.8	5.67
10 PSRX-S84	50.0	90.0	93.3	77.8	5.67
11 SRX-4RHD	50.0	86.7	96.7	77.8	5.67
17 Sienna	50.0	85.0	95.0	76.7	5.67
26 LTP-PR 135	53.3	90.0	96.7	80.0	5.67
27 PPG-PR 136	63.3	91.7	96.7	83.9	5.67
30 PPG-PR 140	56.7	91.7	95.0	81.1	5.67
31 PPG-PR 142	53.3	88.3	93.3	78.3	5.67
35 BAR Lp 10969	53.3	85.0	93.3	77.2	5.67
39 BAR Lp 7608	53.3	86.7	93.3	77.8	5.67
42 Fiesta 4	50.0	83.3	93.3	75.6	5.67
48 CS-PR66	56.7	83.3	93.3	77.8	5.67
49 CST	53.3	91.7	96.7	80.6	5.67
52 PSRX-3701	66.7	91.7	95.0	84.4	5.67
57 IS-PR 409	46.7	88.3	95.0	76.7	5.67
58 IS-PR 463	50.0	90.0	96.7	78.9	5.67
59 IS-PR 469	50.0	83.3	91.7	75.0	5.67
61 IS-PR 487	43.3	86.7	93.3	74.4	5.67
63 IS-PR 489	50.0	88.3	96.7	78.3	5.67
67 ISG-30	50.0	90.0	93.3	77.8	5.67
76 PST-2BNS	56.7	90.0	95.0	80.6	5.67
85 PRX-4GM1	56.7	93.3	96.7	82.2	5.67
88 Palmer V	46.7	85.0	95.0	75.6	5.67
3 PR 909	56.7	80.0	91.7	76.1	5.33
5 APR 2306	50.0	91.7	95.0	78.9	5.33
8 DLF LGD-3026	43.3	83.3	91.7	72.8	5.33
9 DLF LGD-3022	50.0	90.0	95.0	78.3	5.33
12 P 02	53.3	90.0	93.3	78.9	5.33

Table 1. 2010 NTEP Perennial Ryegrass Test: Percent cover and turfgrass quality (TQ).

Entry Number Name \dagger	Percent cover				June TQ
	April	May	June	Average	1 to 9
13 S85	50.0	88.3	93.3	77.2	5.33
18 Brightstar SLT	56.7	90.0	96.7	81.1	5.33
23 PPG-PR 128	56.7	85.0	91.7	77.8	5.33
24 PPG-PR 133	56.7	86.7	93.3	78.9	5.33
25 PPG-PR 134	53.3	86.7	93.3	77.8	5.33
38 2NJK	46.7	88.3	93.3	76.1	5.33
40 Pinnacle	50.0	91.7	98.3	80.0	5.33
41 APR 2445	46.7	83.3	93.3	74.4	5.33
43 GO-G37	50.0	85.0	91.7	75.6	5.33
46 ISG-31	43.3	91.7	91.7	75.6	5.33
47 A-35	46.7	86.7	91.7	75.0	5.33
50 JR-178	53.3	86.7	91.7	77.2	5.33
51 JR-192	60.0	88.3	93.3	80.6	5.33
68 PST-204D	50.0	88.3	95.0	77.8	5.33
71 PST-2MG7	53.3	86.7	93.3	77.8	5.33
73 PST-2AG4	53.3	90.0	93.3	78.9	5.33
74 PST-2MAGS	36.7	83.3	93.3	71.1	5.33
78 Rio Vista	50.0	83.3	95.0	76.1	5.33
79 CL-301	63.3	93.3	98.3	85.0	5.33
80 Bonneville	46.7	85.0	91.7	74.4	5.33
81 PSRX-4CAGL	53.3	81.7	95.0	76.7	5.33
87 Pick 4DFHM	53.3	86.7	95.0	78.3	5.33
15 Allante	53.3	83.3	91.7	76.1	5.00
32 PPG-PR 143	56.7	81.7	93.3	77.2	5.00
37 BAR Lp 10970	40.0	75.0	90.0	68.3	5.00
44 CS-20	50.0	80.0	90.0	73.3	5.00
45 ISG-36	56.7	81.7	90.0	76.1	5.00
53 Pick 10401	56.7	86.7	95.0	79.4	5.00
55 RAD-PR62	43.3	83.3	93.3	73.3	5.00
70 PST-2DR9	56.7	88.3	91.7	78.9	5.00
72 PST-2TQL	40.0	83.3	91.7	71.7	5.00
75 PST-2K9	43.3	85.0	95.0	74.4	5.00
84 GM3	56.7	88.3	93.3	79.4	5.00
86 SRX-4MSH	56.7	88.3	91.7	78.9	5.00
14 LTP-RAE	50.0	73.3	90.0	71.1	4.67
19 CL 307	56.7	88.3	93.3	79.4	4.67
20 APR 2320	53.3	83.3	88.3	75.0	4.67
21 APR 2038	50.0	76.7	88.3	71.7	4.67
36 BAR Lp 10972	30.0	63.3	83.3	58.9	4.67
69 PST-2NKM	46.7	80.0	91.7	72.8	4.67
82 GO-DHS	46.7	81.7	88.3	72.2	4.67
77 PST-2ACR	40.0	81.7	90.0	70.6	4.33
6 Linn	50.0	78.3	85.0	71.1	4.00
66 DLF LGT 4182	36.7	75.0	85.0	65.6	4.00
LSD§	13.1	11.6	6.3	8.5	1.07
Range	30.0 to 70.0	63.3 to 96.7	83.3 to 98.3	58.9 to 87.2	4.00 to 6.67

\dagger See entry listing and plot plan for field trial location of corresponding entry.
§Any two cultivars that differ in value exceeding LSD (0.05) are statistically significant.

