Growing Greenhouse Tomatoes & Greenhouse Cucumbers in Containers

Richard McAvoy Professor & Extension Specialist - Greenhouse Crops University of Connecticut

richard.mcavoy@uconn.edu

860-486-2925

Slide 2

Slide 4

Trends in Greenhouse Tomato Yields:

~1975 top commercial yields about 100 tons per acre per year (20 #/plant*)

~1990 top commercial yields about 200 tons per acre per year (40 #/plant*) ~2005 top commercial yields about 330 tons per acre per year (66 #/plant*)

*Based on 10,000 plants per acre.

Achieved through intense environmental & crop management techniques to maximize the productive potential of the plant

Slide 3

Environmental & Cultural Factors that are Critical to Crop Production

- o Light quantity, photoperiod, quality
- o Temperature -
- o Water o Fertility -
- o rentility -
- o VPD or humidity (to control disease & water use)
- o Plant care
- o Interaction of all above = crop management

Slide 5

Slide 1

Slide 9

Slide 10

Slide 11

If you can't alter the light, then you have to adjust your management to optimize the light that is available

Slide 14

Slide 15

Slide 16

The Short-Term Temperature Environment

Adjust <u>night</u> temperature to the light condition of the preceding day **Tomato**

During light-abundant seasons:

o Run 62F following dark days
 o Run 65F following bright days

e Ran est fellowing bright day.

Slide 19

Excessive Heat during the bay will Stress the Plant Pay is Area system has the Potential for Lower Air Tensershare to the Day Point Slide 20

Slide 21

Slide 22

Slide 23

Cucumber		
Planting Season	Leaves to 1 st fruit	Fruit on main stem
Winter planting (Dec, Jan, Feb)	10-12	3-4
Spring/Summer (Apr. May, Jun)	8-10	5-8
Late fall (Oct, Nov.)	10-12	3-4

Slide 25

Slide 27

Both Water & Fertility Can Influence the Tendency Toward Either Vegetative Growth or Reproductive (Flowering & Fruiting)

Slide 28

Slide 29 Irrigation: rules of thumb • 8-10%, dry down = Vegetative Growth • 17% dry down = reproductive growth • Adjust water stress throughout the day (wetter early, drier later) • Adjust water frequency to weather conditions # plant size • Frequent light irrigations are best • Avoid chronic over or under watering • Avoid daily extremes

Cucumber

Similar to tomato, fertilizer program is adjusted for three stages in production:

Transplant to 4-6 leaf stage

Normal feed

Heavy fruiting

Slide 33

Cucumber compared to Tomato

Very high potassium requirement

Very high magnesium requirement

High calcium requirement

Typically use a 4-18-38 base formula supplemented with K₂SO₄, MKP (KH₂PO₄), calcium nitrate, potassium nitrate and ammonium nitrate.

Slide 34

Nitrogen form: NH4:NO3 ratio

To boost vegetative growth at any time: increase nitrogen proportion especially ammonium (NH₄) form

 \diamond Typically keep NH_4 to 10% of total N or less but can increase it more in the short term

Total fertility level In early Spring & Fall, higher EC (2.5-3.5)

♦ In Summer, lower EC (1.5-2.5)

Slide 38

Some General Rules

- o Smaller the root volume the less buffered it is to change (pH, EC)
- o Inert media are less buffered against change than Peat-lite & soil-based media
- o As buffering decreases, the need to more closely monitor & manage nutrition increases
- o Small root volumes, allow for better control of crop growth & development BUT only if you are able to monitor and manage closely

Slide 39

Slide 40

Grafted rootstock increases the POTENTIAL for Consistently Big Yields.

With Use of Rootstock like "Maxifort", growers can find the Challenge of "Reining in Excessive Vigor' more of a Management issue than 'Avoiding Loss of Vigor'

Slide 41

Tomato								
N (NO3/NH4)	P	K	Ca	5	Мд	Ŧe	K/N Ratio	ÆC
125-225 ppm N (5-10% NH4)	40-60	200-350	120-180	40-140	30-60	3-7	1:1 to 1.7:1	1.5-3.5
Cucumber								
Cucumber N (NO3/NH4)	Р	K	Ca	S	Мд	Ŧe	K/N Ratio	ÆC

General requirements:

Slide 46

Fortilizer	9√ (9NOz/9N9G)	₽₂O ₅	%₁0	Ca	5	Яłg	Te .	
		5						
fydro-Sol -11-26	5 (5/0)	11	26		4	3.1	0.3	
lack s 5-12-26	5 (5/0)	12	26		8.2	6.32	0.3	
hem-Gro -18-38	4 (3.5/0.5)	18	38		0.5	0.4	0.4	
Hantex -11-31	6 (6/0)	11	31		3.5	3	0.3	
Nantex -11-27	7 (6.48/0.52)	11	27		4.8	3.75	0.1	

Slide 47

Example of a sir	nple fertiliz	er program	n:				
£C=2.3 К/N rat	tio*=1.6						
Fertilizer	(oz/100 gal)	N (%NH4)	P	K	Ca	Мд	Fe
Hydrosol (5-11-26)	14	52	49	225	0	32	3
Calcium nitrate (15.5-0-0)	10	115 (6%)			149		
Potassium nitrate 13-0-44	3	30		82			
Totals		198 (4%)	49	307	149	32	3
		*K/N ratio	o=Total	K/Tota	ıl N=3	07/198	

Example of a prog	ram with s	ame K/N 1	atio bu	t lowe	r EC:		
EC=1.8 , K/N ratio=1	.6						
Fertilizer	(oz/100 gal)	N (%NH4)	P	K	Ca	Мд	Fe
Hydrosol (5-11-26)	11	41	39	177	0	25	2
Calcium nitrate (15,5-0-0)	7.5	87 (6%)			112		
Potassium nitrate 13-0-44	2	20		54			
Epsom salts	1					7	/
Fe-chelate (10%)	0.25						2
Totals		148 (3.8%)	39	231	112	32	4

Example of a program with same EC but lower K/N Ratio: EC=2.3 K/N ratio=1.3

Fertilizer	(oz/100 gal)	N (%NH4)	P	K	Са	Mg	Fe
Hydrosol (5-11-26)	15	56(0%)	53	241	0	35	3
Calcium nitrate (15.5-0-0)	10	115 (6%)			149		
Ammonium Nitrate 34-0-0	0.5	12 (50%)		0			
Totals		184 (7.5%)	53	241	149	35	3

Slide 50

Example: same a. formulation: EC	s original fo C=2.3, K/N	ormulation I ratio=1.6	using	a differ	ent ba.	se	
Fertilizer	(oz/100 gal)	N (%NH4)	P	K	Ca	Мд	Fe
Chem-Gro (4-18-38)	11	33 (12%)	63	258	0	3	3
Calcium nitrate (15,5-0-0)	12	130 (6%)			179		
Potassium nitrate 13-0-44	1	10		27			
Epsom salts	6					44	
Totals		181 (7.2%)	63	286	179	48	3

Slide 51

Program	91 (%NHG)	ę	x	Ca	S	Mg	To .	K/N Ratio
Canada (closed)	165 (8.5%)	38	254	110	48	24	5	1.5/1
Canada (open)	240 (7%)	58	371	216	141	58	8	1.5/1
Irizona	144	62	199	165		50	2.5	1.4/1
(ississippi pring)	171	48	304	180		48	3	1.8/1
tississippi ummer)	132	36	228	135		36	2.25	1.8/1
Connecticut spring)	200 (4%)	53	323	150	45	35	3	1.6/1
Connecticut (hot L tops thinning)	160 (7.5%)	42	220	120	56	43	3	1.4/1

Slide 52

Select the base fertilizer you are using (e.g. Hydro-Sol 5-11-26, Jack s 5-12-26, Chem-gro 4-18-38)

How to use the look-up tables:

- 2. Find the row that provides all of the ${}^{\circ}P'$ (phosphorus) you need.
- 3. Next 'Look up calcium nitrate' & find the row that provides all of the 'Ca' (calcium) you need.
- Sub-total by adding up all the nitrogen, all the P, all the K (potassium) etc.
- Calculate K/N ratio (total K divided by total N) you can also estimate EC by totaling all of the nutrients together (total ppm), divide this number by 680 and then add the EC of your wate
- Add other fertilizers such as Epsom salts to supplement Mg (magnesium), potassium nitrate to increase potassium & nitrogen as needed.
- increase provisions or interest interest. To increase plant vigor (increase nitrogen ed lower K/N ratio), by increasing calcium nitrate or you can add a small amount of amomium nitrate.
 5. To reduce plant vigor, increase the K/N ratio by increasing the base fertilizer or increasing potassium nitrate.

Slide 49