In 2018, Extension personnel from the Universities of Massachusetts, Vermont, New Hampshire, and Rhode Island documented production practices and took soil and leaf samples from 20 tomato high tunnels in those 4 states, with support from the New England Vegetable and Berry Growers' Association. Soil and tissue samples were analyzed at the Universities of Maine and Massachusetts labs. Here are some guidelines for optimizing tomato production based on the data collected.
Agriculture
Phytophthora species consistently rank as some of the most devastating disease agents in Massachusetts farms. Two species, P. infestans and P. capsici, attack regionally important vegetable crops, including cucurbits, peppers, tomatoes, eggplant and potatoes. In 2007, over 8,000 acres of vegetable crops susceptible to infection by P. capsici and P. infestans were harvested in Massachusetts.
The agricultural community needs to improve nutrient use efficiency for modern cropping systems to ensure agronomic viability and environmental quality. Improving efficiency will require more than new technology. It will require a different approach to nutrient management: the use of adaptive management concepts and processes. Expected outcomes/impacts of this work include:
We worked with Massachusetts growers on a broad range of activities related to Integrated Pest Management for diversified vegetable and fruit farms. One of the core components of this project is working with several 'mentor farms,' who grow both fruits and vegetables and are open to expanding their use of advanced integrated pest management techniques as well as working with us to better understand how a diversified farm can use IPM. We also conducted field trials on-farm and at our research farm on IPM methods identified by growers as their priorities each year.
Fire blight is a major threat to apple production in USA. It can destroy thousands of high density trees per farm in epidemic conditions. Our priority is to address this threat by development of pest risk assessment through quantifying survival of fire blight bacterium Erwinia amylovora in wood cankers as main sources for infection. We will determine its survival in relation to apple and pear cultivar susceptibility, tree drought stress, and winter cold. Current fire blight prediction models assume successful fire blight survival in cankers every year.
Dual-use systems are still novel, and to a degree experimental. What agricultural activities are most compatible with dual-use is not well understood, nor is whether the new incentive will be sufficient to spur significant adoption of dual-use cropping systems. UMass has important roles in the development and adoption of dual-use systems. First, UMass Extension will serve as a clearinghouse of information and an educational resource for the agricultural and solar energy communities regarding the new technology and new incentive program.
Experiments will be conducted in the greenhouse and in the field with leafy vegetables to investigate if the mineral nutrient content of these foods can be enriched through fertilization of the crops. This research will address investigations of mineral nutrients, suggested to include phosphorus, calcium, magnesium, potassium, iron, manganese, copper, and zinc, which the investigators have the capability of analyzing in their laboratories. The research will emphasize investigations with lettuce that can be cycled rapidly in greenhouse or field production.
This research will help to understand and develop practices that will improve soil fertility by enhancing the efficiency of use of nutrients supplied by organic or conventional fertilizers. The increased efficiency may help improve yields and quality of plant-derived foods and allow for production of nutritjous, healthful foods for consumers. The accumulation of elemental nutrients in these foods is expected to be enhanced by biochar compounded with conventional or organic fertilizers.
Pages
