Back to top

Completed Research Projects

Environmental Conservation

Invasive plants in forest understories in Massachusetts threaten native ecosystems and working forests. This research will use satellite remote sensing to map three understory invasive species (buckthorn, honeysuckle, and barberry) in western Massachusetts. Occurrence maps will be compared to geology, topography, and land use to better identify correlates of invasion across the landscape and create maps identifying high invasion risk.

Invasive plants lead to the loss of crop revenue in agricultural systems, damage native habitats and wildlife populations, and alter ecosystem services such as nutrient cycling. This project will map the abundance of 13 problematic invasive plants across the northeastern United States by collecting expert knowledge. We will then predict invasion risk based on current climactic suitability, as well as future risk associated with climate change.

Food banks are major consumers of energy related to food handling and storage as well as major customers for local food producers. Energy efficiency and cost reduction in food banks could have synergistic benefits for both types of enterprise. This project will develop a process map to integrate energy and food handling audits tio help identify key nodes for effective energy efficiency and food safety interventions. By evaluating  technological innovation in the context of the local post-harvest food system the food banks can optimize energy efficiency and food safety.

Global climate change affects every aspect of our life. Global warming increases the intensity of drought, which leads to the increase in frequency and severity of forest fires. Beyond being a source of soot and polyaromatic hydrocarbons (PAHs), severe wildfires/forest fires can damage soils, water quality and quantity, fisheries, plant communities, wildlife habitat, and endangered species; result in economic and property loss; and cause harms to the environment and public health. Forest thinning or prescribed burns reduce the accumulation of hazardous fuels and restore forest health.  The major cause of global warming is the ever-increasing concentration of carbon dioxide (CO2) in the atmosphere from the use of carbon-based fuels. Biochar, the anaerobic pyrolysis productof biomass waste material, has attracted research interest as a soil amendment that may improve soil structure, moisture retention, and buffering capacity, and that helps control plant root diseases and sequester carbon in soils (instead of release to air as CO2), as a result, mitigate greenhouse effect. Therefore, the goal of this proposed project is to utilize wood waste materials to produce biochar which can be used in both forest and agricultural soils to improve soil quality, sequester carbon in soils, and reduce the emission of greenhouse gases (e.g., CO2 and N2O).

 

This multidisciplinary project will promote the use of biochar and bio-oil generated from agricultural/forest organic wastes to enhance small farm sustainability through providing renewable fuel, and improving soil quality and crop productivity, and to improve the environment through sequestrating greenhouse gases and reducing the mobility and exposure of contaminants in soils.

This study will examine threats to water security and potential impacts on water quantity and quality in watershed systems. The main goal of the study is to evaluate the effects of land use, extreme precipitation, and climatic stressors on water security (quantity and quality) and potential mitigation opportunities at a river basin scale. Geographic Information Systems (GIS), uncertainty analysis, simulation modeling, and a multi-attribute decision framework will be used to evaluate and advance water security in watershed systems.

The long-term goal of this research is to gather more empirical data that will help practitioners decide which trees to choose for a particular site. The same settings where trees provide benefits present challenging and even severe growing conditions that may thwart survival and growth (Jutras et al. 2010). Empirical data to describe the survival and growth of such trees are limited, and most of the work has considered trees growing in field plots rather than actual residential settings (Watson et al. 1986; Morgenroth 2011). This work will help to quantify survival and growth of trees in residential settings.

It has been hypothesized that climate change will cause plant species ranges to shift northward with plants at the south end of ranges declining in vigor and growth rate. The purpose of this research is to test this hypothesis for red spruce and balsam fir along the southern end of the continuous distribution of these species, in Massachusetts. By measuring the growth patterns of these trees, we can determine if the southern end of the range has been declining, relative to more northern stands of these species.

. Natural and restored wetlands are among the most biodiverse ecosystems present in Massachusetts, providing unique habitat for species ranging from insects and endangered native fishes to coastal birds and songbirds, and plants which thrive in environments that range from completely saturated year-round to dry. Because this niche environment is crucially important for ecosystem services (including, but not limited to verdant habitat and food supply for a large diversity of plant, animal and insect species, water filtration, slowing and spreading of floodwaters, limiting erosion, storage of carbon and other nutrients, temperature buffering, pollinator habitat and forage lands, and water storage), significant attention has been paid to conserving and restoring wetlands and their optimum function wherever possible. One of the most basic, defining metrics of a wetland is, as the name implies, its wetness. The relative water content in the soil can be assessed in a variety of ways, and this quantity alone is important for reasons beyond wetland function. Specifically, for a wetland to become established and remain functional independently, sufficient water must be present throughout the year to favor wetland plants and animals, which thrive in wet environments but are unlikely to outcompete invasives or other species in drier regimes. We foresee a continued interest in wetland restoration in Massachusetts and predict that measurable metrics to assess the success of such restoration efforts are desired. To that end, we propose developing a series of tools to measure soil moisture and subsurface thermal regimes to monitor change over time.

This research will determine the environmental behavior and process of several types of manufactured nanomaterials. The results of this study are expected to help us understand how these manufactured nanomaterials interact with natural and synthetic molecules, and their fate, mobility, exposure and bioavailability in the environment.

This project will examine the effect of natural diversity on biofuel production efficiency by using a grass energy model organism (Brachypodium distachyon), and treatment with both biological and thermochemical conversion.

Acid rain and atmospheric pollution continue to be regional and national problems. The site's data contributes to the accurate assessment of precipitation chemistry and the effectiveness of the nation's air pollution laws and regulations.

This project uses experimental economics and stated preference surveys to address the the assumptions contained within incentive-based policies -- as well as evaluating alternative regulatory approaches and the management of common property.

Global climate change and nitrogen deposition are processes that will only increase as industrialization continues. The purpose of this study is to understand the response of the microbially driven soil nitrogen cycle to the combined effects of temperature increase and nitrogen amendments in forest soils of New England.

The goal of this project is to clarify the essential link between the best design and management practices for green infrastructure in new suburban residential developments, the actual results those practices achieve, and the value that residents place on the protected areas.

With increased pressure to utilize more practical, ecological and economically feasible strategies to manage turfgrasses, research is needed to identify best management practices to preserve water resources. The primary goal is to increase sustainability of turfgrass by addressing water conservation issues, including (i) efficient irrigation strategies based on actual turfgrass water use, (ii) drought resistant species and cultivars, and (iii) an artificial wetland system to aid in preservation of water quality from managed turf settings.

The goal of this research is to gain better insight into the decision making process of Massachusetts forest-owning families in regards to the future of their land so that educators may tailor outreach programs and material to help these families make informed decisions about it. The cumulative effect of the independent decisions that these landowners make about their land will determine the future of our landscapes and the public benefits they continue to provide (or not to provide).

Reaching the potential for renewable biofuels depends on the development of new technologies that are able to release the energy stored in cellulose fibers. This research project centers around an unusual microbe, Clostridium phytofermentans, that can convert a broad range of biomass sources directly to ethanol without expensive thermochemical pretreatment. Further development of conversion processes using C. phytofermentans will create a path to renewable biofuels using our region's sustainable forestry and crop resources.

Energy

Nearly all food and agricultural waste in the U.S. enters landfills, making it the largest contributor of material entering these sites. Biological pre-treatment of large organic molecules by fermentative organisms lowers the high organic carbon load in waste, lowers wastewater treatment costs, and can produce bioenergy to partially offset costs. Conceivably, microbes that grow best above 80°C, or so-called ‘hyperthermophiles’, could be used to consolidate wastewater heat treatment and organic remediation in a single step to decrease costs while producing H2 as an energy product.

A home that has been designed according to LEED green building standards may not necessarily be sustainable unless the systems operations and maintenance are tuned up and owners are. This project will include environmental audits of fourteen LEED-certified homes in New England at least twelve months after they were occupied. Findings will be evaluated by comparing baseline (predicted) performance data (LEED documentation) with actual operational data in order to identify the issues that effect sustainability.

Food banks are major consumers of energy related to food handling and storage as well as major customers for local food producers. Energy efficiency and cost reduction in food banks could have synergistic benefits for both types of enterprise. This project will develop a process map to integrate energy and food handling audits tio help identify key nodes for effective energy efficiency and food safety interventions. By evaluating  technological innovation in the context of the local post-harvest food system the food banks can optimize energy efficiency and food safety.

This multidisciplinary project will promote the use of biochar and bio-oil generated from agricultural/forest organic wastes to enhance small farm sustainability through providing renewable fuel, and improving soil quality and crop productivity, and to improve the environment through sequestrating greenhouse gases and reducing the mobility and exposure of contaminants in soils.

This project will examine the effect of natural diversity on biofuel production efficiency by using a grass energy model organism (Brachypodium distachyon), and treatment with both biological and thermochemical conversion.

Reaching the potential for renewable biofuels depends on the development of new technologies that are able to release the energy stored in cellulose fibers. This research project centers around an unusual microbe, Clostridium phytofermentans, that can convert a broad range of biomass sources directly to ethanol without expensive thermochemical pretreatment. Further development of conversion processes using C. phytofermentans will create a path to renewable biofuels using our region's sustainable forestry and crop resources.

Water

This project utilizes robotic submersible technology to characterize submerged aquatic vegetation (SAV) blooms in the Charles River in Massachusetts.

Global climate change is altering the Earth's natural cycling of water from the ground to the air and back again, what is known as the hydrologic cycle. In New England, climate change is predicted to increase temperatures and increase the frequency and strength of rain events. The increased temperatures will result in less snow accumulation in the winter and an increased need for irrigation in the hotter summer as evapo-transpiration increases. This will alter significantly the recharge/extraction cycle. Will less water enter groundwater aquifers because of reduced snow fall? Will enough water recharge the aquifers to offset the amount extracted in the summer for irrigation? Certainly the timing of recharge will change. These changes will require a better understanding of recharge rates and a better characterization of groundwater aquifers; the volume of water present and its availability. Understanding the seasonal timing and rates of groundwater recharge is critical to maintaining a sustainable water supply. Importantly, how will these changes in the hydrolgical cycle effect sustainable agricultural practices?

This project involves monitoring the levels and locations of EDCs (endocrine disrupting compounds) in the Assabet River of eastern Massachusetts to advance the protection of the aquatic environment.

Researchers will evaluate the potential use of field indicators of hydric soils to characterize wetland hydroperiods with respect to frequency, depth, and duration of water table fluctuations; test the effectiveness of proposed hydric soil indicators to identify 'problem hydric soils'; test monitoring protocols used to identify reducing conditions to determine if they are effective within a range of soil conditions within the Northeast; and investigate the hydraulic properties of hydromorphic soils with episaturation.

This project has three components to increase sustainability in Massachusetts cranberry production:

  • development and demonstration of sustainable practices for the management of the most severe pest problems: cranberry fruitworm, fruit rot disease, and the parasitic weed dodder.
  • investigation of practices to conserve water and fuel.
  • work with growers to implement nutrient management Best Management Practices (BMPs).

This project will study and numerically model road salt impact on water quality in a typical aquifer in eastern Massachusetts.

This study will examine threats to water security and potential impacts on water quantity and quality in watershed systems. The main goal of the study is to evaluate the effects of land use, extreme precipitation, and climatic stressors on water security (quantity and quality) and potential mitigation opportunities at a river basin scale. Geographic Information Systems (GIS), uncertainty analysis, simulation modeling, and a multi-attribute decision framework will be used to evaluate and advance water security in watershed systems.

With increased pressure to utilize more practical, ecological and economically feasible strategies to manage turfgrasses, research is needed to identify best management practices to preserve water resources. The primary goal is to increase sustainability of turfgrass by addressing water conservation issues, including (i) efficient irrigation strategies based on actual turfgrass water use, (ii) drought resistant species and cultivars, and (iii) an artificial wetland system to aid in preservation of water quality from managed turf settings.

Food Science

 Nanotechnology is defined by the National Nanotechnology Initiative (NNI) as “…the understanding and control of matter at dimensions between approximately 1 and 100 nanometers, where unique phenomena enable applications. Here in this proposal, we aim to develop four nanotechnology enabled solutions to improve food quality, safety and nutrition.  A major trend in the modern food industry has been the development of functional foods designed to improve human health and wellbeing. Consumption of these foods may reduce the incidences of chronic diseases (such as cardiovascular disease, eye disease, diabetes, cancer, and hypertension) or improve human performance (such as alertness, activity levels, memory, and stamina).

This research focuses on utilizing emulsion technologies to allow omega-3 fatty acid incorporation into foods and to increase the bioavailability of these important dietary fats.

Dietary factors are important predictors of long term health and the incidence of chronic disease. Laboratory methods will be employed, primarily in vitro models, such as in vitro digestion and tissue cultures, which will be used to evaluate the bioactivity of nutrients and other food bioactives to understand the mechanisms. The investigator will seek to advance the science of defining the role of bioactive dietary constituents for optimal human health. This will provide fertile grounds for ongoing collaborations and future collaborative research and grant proposal development.

Pages