Back to top

Completed Research Projects

Agriculture

The agricultural community needs to improve nutrient use efficiency for modern cropping systems to ensure agronomic viability and environmental quality. This will require a different approach to nutrient management: the use of adaptive management concepts and processes. This project will develop technical and educational tools to encourage adaptive management.

Nanoparticles (NPs) are defined as particles with at least one dimension smaller than 100 nm. As particle size decreases the reactivity of the surface atoms could increase dramatically. These unique properties make nano-sized particles valuable engineering materials because of their extraordinary strength, chemical reactivity, electrical conductivity, or other characteristics that the same material does not possess at the micro- or macro-scales. ENPs are being exposed to different environmental niches via deposition of airborne NPs, application of agrochemicals containing NPs, accidental spills, land application of sewage sludge biosolids, and landfill leachates. There the environmental risks of ENPs are attracting increasing attention from both the public and scientific communities due to their toxicity to organisms. The main pathways through which MNPs are introduced to arable soils are the application of sewage sludge (biosolids) and irrigation with treated wastewater. These agricultural practices are common in many countries including USA. Contamination of agricultural soils with ENPs is of great concern due to their uptake by crops, thus posing the problem to food safety and exposure to humans. To ensure safe application of biosolids and irrigation with treated wastewater containing ENPs, there is an urgent need to investigate the fate of ENPs in the soil-water-planMass Agricultural Experiment Stationt system and to evaluate the associated risks. Therefore, this research will determine the environmental fate and process of several types of ENPs and their plant uptake and translocation in soil-water-plant systems. Also, we will study how ENPs affect the availability and uptake of other contaminants (e.g., metals and antibiotics) by plants. The results of this study are expected to help us understand how these ENPs interact with soil and water reactive components (e.g., DOM, clays). In addition, we will better understand the retention, bioavailability, uptake and translocation, transformation and phytotoxicity of ENPs in soil-waterplant system. Also, we can provide useful data for assessing the mobility, exposure and risk of ENPs in agriculture and the environment in general.

This research continues exploration of biological (non pesticide) control of a series of invasive plant and insect species that affect crops and forests.

African trypanosomes are flagellated protozoa that cause sleeping sickness in people and Nagana in domestic animals. These diseases are fatal if left untreated. The diseases are endemic in the humid and semi-humid zones of Africa affecting a landmass of 10 million km 2 and 36 countries. Trypanosomiasis precludes cattle-based agriculture from much of this area and threatens up to 60 million people, of whom about a half million are presently infected.

This research will examine possible affects of climate change on certain agricultural crop plants. It will include experiments that will allow prediction of how timothy and alfalfa plants will respond to future elevated CO2 and O3 levels.

This research involves modeling of cell growth, metabolite production rates, and product yields on various feedstocks using a variety of target organisms that can perform the bioprocess. These emphases need to be addressed prior to commercial implementation of generation of biofuels and industrial precursors from hydrothermal vent microbes.

The market for specialty foods targeted for Latino populations is especially strong in New England. While most of these foods are imported, many can be locally grown, offering a strong and increasing market for local farmers. We will work to evaluate germplasm of Latin American specialty crops with the objective of identifying parental materials to initiate a breeding program for these crops.

This project focuses on male equine infertility from several perspectives: 1) understanding at the molecular level the mechanisms of the causes of male infertility; 2) Methods to be developed during this project could easily be translated to standardized tests in the clinical laboratory; 3) Understanding of male infertility at the molecular level could provide rational strategies to treat infertile stallions and/or improve assisted reproductive technology.

This project will develop and diversify Crambe (an oilseed crop) and brassica (mustard green) species as dedicated bioenergy crops for biodiesel production. The proposed strategy will increase crop biomass and seed yields while growing these crops on marginal and heavy-metal-contaminated lands, thus increasing both yield and arable acreage.

This effort will develop local production and post-harvest practices to assist Massachusetts farmers to produce high quality Chinese medicinal plants with uniform levels of bioactive constituents. This will ensure the type of plant material desired by practitioners of acupuncture and Oriental medicine. This will benefit growers, practitioners, and those in need of healthcare. The establishment of Chinese medicinal herbs in Massachusetts could provide an income source for small farms and help maintain rural farmland.

This project will explore the hypothesis that development of an effective LAMP assay (loop-mediated isothermal amplification) for livestock and avian chlamydiosis will lead to significant reductions in zoonotic disease as well as morbidity, mortality and the reproductive health of farm animals.

The goals of this project are to supply apple growers with new tools that will enable them to continue towards a goal of sustainability while providing local consumers with a safe and healthful supply of fruit. As such, it will research new methods, educate growers, and engage consumers and wholesalers in Integrated Pest Management.

This project proposes to capture DNA sequences from armored scale insects intercepted at plant quarantine stations, while carefully identifying each specimen in the traditional way by mounting on a microscope slide. The results -- DNA sequences from well-identified specimens—will help us develop a DNA-based system of identification, and also contribute to improving our understanding of the history and diversity of armored scale insects and their relationships with their host plants.

This project will examine methods to control undesirable sprouting in potatoes through breeding, transgenic strategies, or environmentally friendly agents.

This study is expected to reveal differences in one or more aspects of immune components and will aid in the understanding of how chronic exposure to certain organic pesticides may alter immune responses.

This projects involves two aspects of equine operations: manure handling and a comparison of footing materials. This project will evaluate two simple low cost aerated static composting systems for typical small acreage horse and/or livestock operations. In addition, it  will evaluate various footing materials and provide the cost of operation and materials for each used material.

Optimal food production by plants requires a sufficient supply of soil nutrients, the most limiting of which is nitrogen. Sustained agricultural productivity has historically been maintained in the rich world by copious application of synthetic nitrogen fertilizers, with high cost to the economy and the environment. Unique among crop species, legumes produce their own nitrogen nutrient through a symbiosis with nitrogen-fixing bacteria collectively known as rhizobia. In this symbiosis, the bacteria convert molecular nitrogen into ammonia in exchange for host photosynthate. Studying the nitrogen-fixing symbiosis and fully explore its potential can boost the productivity of legume crops in the short term, and may expand this ability to non-legume crops over the long run. However, the nitrogen-fixing symbiosis is a complex system, and currently we know too few of the molecular players involved. This project will optimize two methods to reduce the activity of a given gene, and use these methods to screen for legume genes required for the function of the nitrogen-fixing symbiosis. The result of such endeavors should be a comprehensive list of legume genes playing critical roles in interacting with their rhizobial symbionts, and help unveal crucial biological processes in the interaction between plants and beneficial microbes.

Deficiencies of mineral content in human diets, a causal factor in rising rates of malnutrition worldwide, appear to derive from diminished contents of mineral nutrients in foods of plant or animal origins.This project will provide a foundation of data to help ascertain if the nutrient content of foods can be enhanced through selection of crop varieties and improved nutrition of crops and will assess how dietary habits affect mineral nutrition of humans.

The herbal and botanical product market, estimated at more than US $60 billion in 2003, has been increasing at 6 to 8 % per year. According to the United Nations Comtrade Statistics, the estimated size of the global market for essential oils, fragrances, and flavors in 2013, was US $26 billion, growing an average rate of 8.1% in the past five years. The market for herbal dietary supplements in the United States has reached an estimated total of $6.4 billion, increasing by 6.85% in 2014 as compared with the previous year. Improvements in production of medicinal and aromatic plant products are needed to meet increased market demands.

Early studies have demonstrated that soil microorganisms associated with plant roots can improve plant growth and development through various mechanisms, including increasing available nutrients to plants, synthesizing phytohormones, inducing plant stress tolerance, and suppressing pathogens. Although the mechanisms are not fully understood, studies have demonstrated that the use of soil microorganisms (PGPRs) can promote synthesis of secondary metabolites in plants, improving the quality and value of the medicinal and aromatic plants. While commercial PGPRs and mycorrhizal fungi are available for various grain crops and vegetables in the United States, few of these products are available for medicinal and aromatic plants.

In the proposed study, PGPRs and mycorrhizal fungi will be studied for the growth and secondary metabolite synthesis in the Lamiaceae and other herbal families for their use in culinary and essential oil products. The development of PGPRs and mycorrhizal treatment that improve medicinal and aromatic plant yields and secondary metabolite production can lead to increased profits for growers and industries using natural products.

Literature on food composition demonstrates that the mineral nutrient density of vegetables has fallen in the past 50 years. This decline is associated with two factors: declines in soil fertility and with the genetics of plant cultivars that accumulate yield at higher rates than they accumulate mineral nutrients. This research is intended to help develop systems of food crop production that will supply adequate mineral nutrition to people directly through crop-derived foods.

Utilizing food systems to improve nutrition without the need for artificial fortification of food or use of dietary supplements of mineral nutrients is important in ending malnutrition. Malnutrition from deficiencies of mineral elements is reported to be on the rise worldwide, even in the United States. It is estimated that half of the world population suffers from incidences of mineral nutrient deficiencies. These deficiencies limit the physical, intellectual, and mental health activities of the affected people. The deficiencies appear to derive from diminished contents of mineral nutrients in foods of plant (vegetables, fruits) or animal (meats, milk, cheese) origins. With fruits and vegetables, the decline in nutrients is related in part to depletion of nutrients from soils without adequate replenishment with fertilization. Some of the diminished nutrient contents in fruits and vegetables may be related to genetics of new cultivated varieties of produce. Research is needed to develop systems of food crop production that will supply adequate mineral nutrition directly through crop-related foods and from meats and dairy products from livestock and poultry that are provided with adequate mineral nutrition. The research proposed under this project will provide a foundation of data obtained through field, greenhouse, and laboratory research to enable the investigators to pursue studies in planning sustainable food systems for human nutrition and crop production. The research will allow the investigators to obtain data that will help to ascertain if the nutrient content of vegetables and fruits can be enhanced through selection of crop varieties and improved nutrition of crops through fertilization and soil amendments.

This project has three components to increase sustainability in Massachusetts cranberry production:

  • development and demonstration of sustainable practices for the management of the most severe pest problems: cranberry fruitworm, fruit rot disease, and the parasitic weed dodder.
  • investigation of practices to conserve water and fuel.
  • work with growers to implement nutrient management Best Management Practices (BMPs).

This research project seeks to develop better understanding of the iron homeostasis process in corn in order to address biofortification of staple foods with iron.

Laminitis is a crippling disease that affects about one-percent of the more than nine million horses in North America, at a cost of over $1 billion annually. The goals of this project are to identify the specific metalloproteinases responsible, in hope of identification of inhibitors that can protect horses at risk.

This project, a component of a larger effort to annotate the bovine genome (define genes within the genetic code). One goal is to determine whether variations are associated with enhanced or decreased resistance to infectious diseases. We are interested in their receptors that detect the presence of infectious agents as well as the molecules these cells may produce to communicate with other cells in the immune system (known as cytokines or interleukins).

Evaluate pasture management systems with beef and other livestock.

Preventative and therapeutic reproductive management strategies...that are not drug-base will improve animal reproductive performance.  This is a key part of sustaining an agricultural production system that is highly competitive in the global economy. The research proposed here will focus on several important areas. The team continues to conduct studies to identify novel genes and cell function that might contribute to predicting oocyte quality.  The expression of factors that regulate luteal development, function, and regression are also central to improving female fertility in dairy and beef cattle. Likewise, environmental and metabolic stress negatively impact embryonic and fetal survival in cattle and sheep; and therefore, represent an additional area of research focus.

This project is intended to develop effective ways to keep fruit on trees until mature. It is also evaluating the effects of the methods on fruit quality and storage potential.

This project takes a theoretical and empirical approach to study how several aspects of the food supply chain affect the decisions of consumer and firms and their well-being. The research is examining three issues: buyer market power, the vertical structure of markets and benefits and costs associated with mandated labeling of food products.

This multidisciplinary project will promote the use of biochar and bio-oil generated from agricultural/forest organic wastes to enhance small farm sustainability through providing renewable fuel, and improving soil quality and crop productivity, and to improve the environment through sequestrating greenhouse gases and reducing the mobility and exposure of contaminants in soils.

This research will examine possible affects of climate change on certain agricultural crop plants. It will include experiments that will allow prediction of how alfalfa plants will respond to future elevated CO2 (800ppm) and elevated ozone (O3) (80ppb).

This project will examine the effect of natural diversity on biofuel production efficiency by using a grass energy model organism (Brachypodium distachyon), and treatment with both biological and thermochemical conversion.

Pathogens and parasites including viruses and protozoa are known to be major contributors in the decline of honeybee colonies, yet we know very little about epizootiology of these agents. A primary reason for this lack of knowledge is the microscopic and submicroscopic nature of these bee pathogens. As part of our research we have developed and are continuing to develop molecular methods that allow us to detect and monitor the prevalence and spread of these infectious agents in bee populations. In addition we will be exploring the utility of small bio-reactive molecules for use in controlling viruses and protozoan pathogens without harming bees.

This project addresses environmental concerns and profitability issues faced bu livestock farms. It is evaluating options for cover crops and for pasture management.

Disaster Preparedness

The research focuses on responses to extreme flood events in Vermont, primarily Hurricane Irene, but also prior flood disasters. This research contributes to theoretical debates on adaptation to extreme events by explicitly accounting for the impacts of human-actions in response to flooding on riparian forest ecosystems needs. This research also investigates the motivations for human action.

Nutrition

Mounting epidemiological and experimental evidence consistently indicates that obesity is a robust risk factor for several common cancers, and especially so for colorectal cancer. As obesity has reached an epidemic level and increases in the scope of the problem are further projected, it is critical to understand the mechanism(s) responsible for the link and thereby to develop strategies for prevent obesity-related cancer. The aim of this project is to explore dietary strategies to attenuate obesity-associated colonic inflammation.

The purpose of this research is to identify the microbial community constituents of mosquito midgut contents in order to identify new pathogens and functional gut microbes.

This research will investigate whether the same type of physical environment needed to promote improved dietary behaviors in families and children will also be effective in older adults. Information gathered will assist nutrition professionals in designing interventions for older adults emphasizing the need for fruits, vegetables and whole grains in the diet and based on factors relevant to them. Results will also be used to design community-wide food and environmental policies.

This project will explore the hypothesis that development of an effective LAMP assay (loop-mediated isothermal amplification) for livestock and avian chlamydiosis will lead to significant reductions in zoonotic disease as well as morbidity, mortality and the reproductive health of farm animals.

This project will develop new technologies that can stabilize omega-3 fatty acids so they can be incorporated into a wide variety of foods. Production of omega-3 fatty acids fortified foods could have significant consumer health benefits especially for heart and mental health.

There is a critical need in the meat processing and raw vegetable processing industries for the development of a rapid method for detection of infectious bacteria such as Salmonella and E. coli O157:H7 in such products well before shipping, so as to prevent infectious outbreaks and costly recalls.

Both adult-onset obesity and childhood obesity pose real health risks, with childhood obesity known to be associated with increased risk of chronic diseases. With current rising trends of overweight and obese children, there is great need to develop additional practical approaches to target the obesity epidemic. The objective of this proposed research is to develop a feasible and practical food-based approach to help reduce the incidence of childhood obesity and overweight children.

This research will examine the links between food practices in the Cambodian-American community and health risks among pregnant and post-partum Cambodian women in the United States. More than half of all Cambodian Americans live below the poverty line and a significant number are at high risk for food insecurity and hunger.

Seafood is increasingly consumed in the United States. The ability of a particular foodborne pathogen to grow on raw seafood will be determined as will the process leading to the production of a toxin responsible for foodborne illness.

Deficiencies of mineral content in human diets, a causal factor in rising rates of malnutrition worldwide, appear to derive from diminished contents of mineral nutrients in foods of plant or animal origins.This project will provide a foundation of data to help ascertain if the nutrient content of foods can be enhanced through selection of crop varieties and improved nutrition of crops and will assess how dietary habits affect mineral nutrition of humans.

The overall goal of this project is to increase the consumption of fruits and vegetables in a community of families in a low income, multi-cultural and multiethnic
neighborhood of Worcester, Massachusetts, by integrating expertise in Agriculture, Food Access, and Nutrition Education programming and by increasing the availability of fruits and vegetables for people living in the target area.

The main goal of this project is to develop new mathematical methods to describe and predict changes and deteriorative processes in foods and to improve existing ones, exploiting the power of modern mathematical software and the speed of computers. Secondary objectives are to develop user-friendly interactive software for implementing the new methods of calculation and to improve existing methods to calculate quantities and processes in food science, technology and engineering.

This research is the preliminary stage of investigation to examine the effects of soy supplements on abdominal fat and risk for developing diabetes.

This project is developing food-based delivery systems for transporting butyrate—a bioactive food component with possible cancer preventive effects—to the colon. It will generate fundamental scientific knowledge about how common food components (lipids and polysaccharides) can be assembled into new food structures with novel functional properties. This knowledge could be used to incorporate bioactive lipids (such as butyrate-enriched milk fat) into functional food products specifically designed to tackle human health problems, such as colon cancer prevention.

Food banks are major consumers of energy related to food handling and storage as well as major customers for local food producers. Energy efficiency and cost reduction in food banks could have synergistic benefits for both types of enterprise. This project will develop a process map to integrate energy and food handling audits tio help identify key nodes for effective energy efficiency and food safety interventions. By evaluating  technological innovation in the context of the local post-harvest food system the food banks can optimize energy efficiency and food safety.

Pages