Back to top

Current Research Projects by Department

Department: Department of Environmental Conservation

Forest conservation and management is already complex in New England.  Changes in temperature, precipitation, winter conditions and the timing of seasons have already been documented, and further changes are expected well into the future (Horton et al. 2014). Changes in forest conditions and the geographic distribution of forest types are likely to threaten some ecosystems more than others. Areal coverage of boreal forest and Northern hardwood forests are projected to decline based on model projections (Janowiak et al. 2018). This would affect those species of plants, animals, fungi and other organisms that depend on these ecosystems (Janowiak et al. 2018).
Ecosystems within forested environments, such as streams and wetlands, are also likely to undergo changes that will make it difficult to support viable populations of fish and wildlife and maintain forest biodiversity. For example, as air temperatures rise, corresponding increases in water temperature will further stress cold-water streams. As a result, cold-water stream habitats may disappear or become smaller and more fragmented (Preston 2006, Manomet Center 2013).
Landowners, foresters, conservation organizations, and municipal officials (forest decision- makers) need research-based information on potential impacts on forests and spatially explicit information to guide adaptation strategies and actions. Active conservation measures are necessary to: limit stream warming, identify and conserve potential cold-water refugia, strategically target land protection for refugia for threatened forest types, and ensure terrestrial and aquatic connectivity to maintain viable populations of species dependent on these threatened forest ecosystems. To increase resistance and resiliency to climate change, forest management practices will need to change to ensure species and structural diversity, and adjust to emerging threats, such as invasive species, pests and diseases. 

Interest Area: Environmental Conservation

 Invasive plants are species introduced from another region (non-native) that have established self-sustaining populations and are spreading, often with substantial negative consequences.  Invasive plants have numerous detrimental effects on forest ecosystems.  Several forest understory invasive plants, such as oriental bittersweet, autumn olive, and honeysuckle outcompete or reduce growth of native vegetation. For example, glossy buckthorn grows in dense thickets that shade out native tree saplings and reduce their overall survival by up to 90%. Invasive plants also threaten forest regeneration by altering soil chemistry. For example, garlic mustard releases allelopathic chemicals that kill soil mycorrhizae and inhibit the establishment of native tree seedlings.  As a result of their vigorous growth, invasive plants are often able to dominate ecosystems following disturbance and impede forest succession.

Interest Area: Environmental Conservation

This study will provide important information on long-term trends in water demand and supply, aid in the formulation of water policies for water resource development, and offer information to help protect surface and groundwater supplies. This project will also target areas with the best potential for surface augmentation of water supplies based on the relative benefits and costs of water supply augmentation (through spatially explicit policies for runoff mitigation and groundwater recharge). This project will evaluate water resources within a watershed ecosystem framework, and thereby will consider multiple supplies and uses of water resources. This study will address three areas of special interest to the region, namely:
• Water management in the context of forest loss and rapid development and conflict for water supply;
• Improvements in the assessment of water availability, incorporating technological, institutional, cultural and economic factors that   influence water use and water availability and;
• Improved methods of characterizing and quantifying components of the water cycle in forested watersheds.

Interest Area: Environmental Conservation

Our focus is on the essential pollination services provided by bees on cranberry, the major crop in the region, as well as the bee community in southeastern Massachusetts. Bumble bees, the most common and efficient pollinators of cranberry are undergoing rapid decline. Thus, our focus is surveying and curating collections of bees, education, and research directed at the health of bumble bees; regarding the latter, we will quantify the major pathogens affecting bumble bee health and impacts of grower practices, particularly systemic sprays prior to bloom (contaminating pollen and nectar) and fungicides sprayed at bloom.

Interest Area: Environmental Conservation

This study will investigate how the estimated density of a forest ecosystem bioindicator species, the red backed salamander (P. cinereus)  is influenced by the design of a commonly applied sampling protocol. The project will provide important insights into the utility of artificial cover board surveys as a method for estimating salamander density for use as an indicator of forest ecosystem condition.

Interest Area: Environmental Conservation

There is widespread interest in greening municipalities and increasing urban tree canopy cover, largely through local community-based tree planting initiatives. It is generally estimated that newly-installed (i.e. planted) trees require at least 3 or more years before establishment, when they resume pre-transplant growth rates. Most trees installed in the urban environment are dug from the nursery field with a spade, and wrapped in burlap and a metal basket ('balled and burlap' or 'B&B'). There is interest, however, by shade tree committee members and professional urban foresters alike, in planting trees grown using other easier-to-plant systems, including a variety of container-grown (CG, IGF) and bare-root (BR) tree production methods. Trees grown from these production systems, however, must have the potential to grow long-term and reach maturity to offer the numerous values associated with urban trees that include a variety of aesthetic, social, and environmental benefits.This may be a challenge, since urban environments often present very difficult growing conditions that habitually thwart tree growth and survival. Though advances in understanding have been made, empirical data to describe the survival and growth of such trees remains limited, with the preponderance of research considering trees growing in agricultural plots, rather than in urban settings. Since budget constraints are routinely identified as a key limiting factor relative to urban forest management practices, there is also a need for further information concerning the longer term costs associated with planting and maintaining urban trees. Collecting growth and maintenance cost data on established urban oak specimens in Amherst, MA, produced using various nursery systems will 1) add to the overall base of  knowledge concerning urban tree growth and survival 2) enable the quantification and further understanding of the relationship of urban tree growth/survival and nursery production system 3) Enable the quantification and further understanding of the long-term costs associated with planting and maintaining urban trees. The long-term goal of this work is to gather local, empirical data that will help urban forest practitioners consider the appropriate (i.e. most cost-effective, best-performing) nursery production system, when selecting trees for urban planting in Massachusetts communities.

Interest Area: Environmental Conservation

The overarching goal of this project is to evaluate the potential for global change to affect marine ecosystems within the GOM.We will use a multi-pronged approach, investigating key marine fisheries and aquaculture species of economic importance. Wefirst focus on quantifying the current supply of larvae, a critical life stage for fisheries species, by developing a foundationalsampling framework using traditional taxonomic approaches. Second, we propose to use molecular techniques with larvae andeggs that are difficult to identify using taxonomy. Third, we will conduct focused laboratory experiments to investigate the impactof climate variables on larval performance. Fourth, we will engage directly with fisheries stakeholders to understand theconstraints and opportunities of future changes to species, or the timing and location of the fisheries that are targeting them.This project therefore has four major objectives:

1. Quantify larval supply of key fisheries species and evaluate match mismatch

2. Metabarcoding for fisheries species detection

3. Identify effects of climate on early life stages of key fisheries and aquaculture species

4. Stakeholder engagement to understand sensitivity and resiliency to climate change and the perspective of industry

Interest Area: Environmental Conservation

The expansive growth of solar photovoltaics (PV) in Massachusetts has helped make the state a leader in renewable energy production, but there have been public concerns regarding the development of agricultural lands for solar PV electricity production. In response to these concerns, the Massachusetts Department of Energy Resources (DOER) included provisions in the new state solar energy program which limit conventional ground-mounted solar arrays on farmland, while encouraging innovative "dual-use" technology. Under the new Solar Massachusetts Renewable Target (SMART) program, there is a significant financial incentive for dual-use systems which limit shading and obstructions, and require continued agricultural production on the land below and around solar arrays.

Interest Area: Energy

This study will provide important information on long-term trends in water demand and supply, aid in the formulation of water policies for water resource development, and offer information to help protect surface and groundwater supplies. This project will also target areas with the best potential for surface augmentation of water supplies based on the relative benefits and costs of water supply augmentation (through spatially explicit policies for runoff mitigation and groundwater recharge). This project will evaluate water resources within a watershed ecosystem framework, and thereby will consider multiple supplies and uses of water resources. This study will address three areas of special interest to the region, namely:
• Water management in the context of forest loss and rapid development and conflict for water supply;
• Improvements in the assessment of water availability, incorporating technological, institutional, cultural and economic factors that   influence water use and water availability and;
• Improved methods of characterizing and quantifying components of the water cycle in forested watersheds.

Interest Area: Water

Department: Department of Biology

Many bee pollinators are in decline, and exposure to diseases has been implicated as one of the potential causes. In my lab, we have already established that pollen from one domesticated sunflower source dramatically reduces Crithidia infection loads in the common eastern bumble bees in the laboratory, and that consumption of this pollen improves performance of healthy and infected bee microcolonies. We will expand this work by growing many sunflower cultivars and related taxa, collecting pollen, and repeating laboratory assays to establish how widespread this medicinal trait is across sunflower-related taxa.

Interest Area: Environmental Conservation

Current agricultural practices on available arable land will not meet the nutritional needs of a population that will reach nine billion people by the middle of this century (Ray et al. 2013). In parallel, climate change will increase extreme weather events, including drought (Dai, 2011, Trenberth et al., 2014), and continued urbanization of farmland is eliminating arable land (Song et al. 2015). There is a clear need for sustainable agricultural innovations that can increase yields and provide food security without incurring environmental degradation. Soil microbes are known to form associations with plants and affect plant health, and in recent years, interest has grown in exploiting the beneficial associations that plants establish with microbes. The plant microbiome abounds with plant growth-promoting rhizobacteria (PGPR) that can help plants acquire more nutrients from the soil and tolerate stressors like drought (Barnawal et al. 2013, Bresson et al. 2014). PGPR can also control plant pathogens (Chowdhury et al. 2013), promote beneficial mycorrhizal colonization (Labbe et al. 2014), and produce potentially valuable secondary metabolites (Raaijmakers et al. 2012). Finding ways to harness these beneficial microbes to improve crop growth and yield has the potential to ameliorate the challenges imposed by the world's growing population and environmental degradation.

 

Interest Area: Energy

Department: Stockbridge School of Agriculture

Increasing environmental stresses make crops ever more succeptible to the impact of plant viruses. Plant viruses affect plant functioning and, specifically, the root system. For example, virus infected cover crops may hamper root growth and activity. This may influence the effect of cover crops on the cycling of carbon and other nutrients in soils. Consequently, virus infections may undermine the beneficial use of cover crops to improve soil health, with unclear consequences for soil carbon storage, greenhouse gas emissions, and nutrient status. This project therefore tests how plant virus infection influences the impact of cover crops on soil carbon and nutrient cycling.

Interest Area: Environmental Conservation

Through this research project a variety of ornamental plants will be grown to assess how production practices can be improved through a series of experiments examining irrigation methods and volume, fertilizer quantity, substrate additives, and substrate components. Plant water needs will be assessed to understand how much irrigation is needed to produce good quality plants. This will provide growers with ways of improving irrigation applications by grouping plants by water needs and reducing irrigation applications when possible. Plant fertilizer needs will be assessed in a similar manner. By reducing fertilizer applications the amount of nutrients in the nursery or greenhouse runoff will be reduced lessening the environmental impact. Substrate components and additives will be assessed to further the body of knowledge on their impact on production with an emphasis on their impact on water applications, retention, and leaching and fertilizer retention and uptake.

Interest Area: Environmental Conservation

Plant seed oils have tremendous potential as environmentally, economically and technologically feasible replacements for petroleum, but the relatively low oil yields from existing crops limits the commercial viability of seed oil based biofuels.

Therefore, a primary issue of concern with biofuels and bio-products is the ability to produce enough  feedstock oils without displacing food crops. A second major concern is that environmental stresses such as drought, salinity, heat, and exposure to toxic metals adversely affect the growth and productivity of crop plants and thus are serious threats to crop production for food as well as biofuels. Additionally, increase oil contents and composition of fatty acids in edible oil not only improve the food security but will also improve the health of millions of people globally. Our proposed study addresses these fundamental concerns with research to enable the growth of high yield biofuel crops on contaminated and marginal lands without displacing food crop production. Molecular and biochemical approaches are proposed for improving the tolerance of plants to multiple abiotic and oxidative stresses, which will enable biofuel crops to grow on marginal and nutrient poor lands.

During this project, we will identify the key bottlenecks and rate limiting steps in the pathways for Triacylglycerol biosynthesis and storage in seeds. Further we will engineer Camelina sativa, brassica juncea and other related oilseeds crops for higher oil and seeds yields using the candidate genes. Additionally, we will develop "climate-resilient oil seeds crops" by combining enhanced oil and seed yield traits with traits imparting abiotic stresses tolerance in oil seed crops for enabling these crops to grow on nutrient poor marginal lands under changing climate.

We expect to be able to identify key genes/gene networks that limits the accumulation of lipids in seeds using transcriptomic, genomics and metabolomic approaches and  expect to produce genetically engineered oil seed crops with increased oil and seed yield.

Interest Area: Energy

Improving water management is of increasing importance in horticultural operations. A growing global population and changes in water availability will mean that less water will be available for ornamental plant production. There are also a growing number of federal and state regulations regarding water use and runoff from production areas. Better irrigation and fertilization management practices will help to limit the environmental impact of container plant production by limiting the runoff of water and nutrients from nurseries. It will help growers to meet regulations regarding nutrient management and runoff. Reductions in runoff will help improve quality in local ecosystems.

Interest Area: Water

House flies are the major vector of numerous food pathogens (e.g., Escherichia coli). It has been suggested that the fly crop is the major reservoir for the pathogen and also that this is where horizontal transmission of antibiotic resistance occurs. The salivary glands of most flies involved in vectoring pathogens are also involved in pathogen transmission and their nutrient and pathogen uptake while feeding. This research focuses on two essential organ systems of house flies, in order to explore non-traditional control strategies for the insects. Control of flies is thought to have a potential strong impact on transmission of food pathogens.

Interest Area: Food Science

Department: Center for Agriculture, Food and the Environment

American elms represent some of the most culturally and economically significant urban trees. Their contributions to the urban landscape are numerous and include: carbon sequestration, capture of storm water and airborne particulate matter, reduced heating and cooling costs through wind buffering and shade and enhanced aesthetics with their large, sweeping canopies. Prior to the introduction of Dutch Elm Disease, American elms dominated the urban and suburban landscape because of their beauty, rapid growth rates and ability to tolerate difficult growing conditions.  Despite the devastating effects of the disease, millions of American elms still occupy the urban and forest landscape today. But, after decades of regular injection the costs associated with these treatments are adversely impacting tree heath and this issue must be addressed. The UMass Shade Tree Laboratory, now the Plant Diagnostic Laboratory, was founded in 1935 with the sole purpose of combating the DED epidemic. Now, 80 years later the fight against this destructive disease continues in ways that could never be predicted decades ago.

Interest Area: Environmental Conservation

Department: Department of Microbiology

Although considerable research has been performed focused on the conversion of biomass to useful products, to date we still have no functional bio-refineries in the US or globally. One of the key problems in the conversion of biomass is known as the "lignin recalcitrance barrier". Lignin is a tough "plastic material" produced by plants that, at the molecular level, coats the "cellulosic" components of biomass that are used to produce most bio-based products and biofuels. Currently some very harsh chemical and heat pre-treatment systems that release cellulosic components from the surrounding lignin barrier are used in pilot scale research for most bio-refineries. To date however, these have been shown to be so harsh that they either damage the cellulose components, they are so polluting that they generate problematic or hazardous wastes, or they simply are so expensive that they cannot be used practically. What our research focuses on is harnessing and utilizing the CMF system that was developed millions of years ago by fungal organisms (a system that has largely been ignored by most scientists interested in biomass conversion). We hope that by harnessing the system that these unique "brown rot" fungi have evolved over the millennia that we can mimic and apply their chemistries to produce biorefinery systems that are more effective, and in particular that are highly energy efficient, cost efficient, safe and non-polluting.

Interest Area: Energy

Department: Department of Resource Economics

Residential solar power is an important technological innovation that holds promise for a cleaner energy future. Out of 2.5 million households in the state of Massachusetts, those who installed solar photovoltaic(PV) systems grew from a mere 14 households to 60,465 households between 2010-2017. Between 2015-2017, the residential installations are growing at an even higher rate of 50% (Data source: Massachusetts Department of Energy Resources). It is crucial to understand what factors are determining the household decisions in the process of adopting the solar PV system.

Interest Area: Energy

Department: Department of Food Science

The incidence and prevalence of many chronic diseases are dramatically increasing in the United States and other countries, making these disorders a serious health problem. It is of practical importance to better understand the roles of food-derived bioactive compounds in development of these chronic diseases, in order to provide optimized dietary recommendations or guidelines, and/or develop safe and effective strategies for disease prevention. In this project, we will focus on two major areas: (1) to better understand the effects and mechanisms of food bioactives on development of chronic diseases such a inflammation, aging, and energy metabolism, and (2) to further understand the factors contributing to the poor bioavailability of food bioactives and develop novel strategies to enhance their metabolic stabilities and health-promoting effects. Together, these efforts will provide the fundamental knowledge which is critical to develop safe and effective diet-based strategies for disease prevention, resulting in significant and positive impact for public health.

Interest Area: Food Science

The results of this project will directly impact industries that handle foods most commonly implicated in foodborne disease outbreaks, including low-moisture foods (especially spices, nuts, and dried fruits); fresh, minimally, and shelf-stable processed produce; dairy; fresh and further processed seafood, meat, and poultry products (including fully cooked and ready-to-eat products subject to post-process contamination), as well as other multi-component and processed foods. Moreover, the threats and specific needs for food safety in the food industry are constantly evolving and require continued risk-based solutions in the face of these changes. Therefore, the project proposes risk-based solutions for the effective control of foodborne pathogens across food commodities in the U.S.

Interest Area: Food Science

There is a strong association of chronic inflammation with various types of diseases.

However, many of the current treatments for chronic inflammation are limited due to undesirable side effects associated with their long-term use and research has shown bioactive dietary components to be promising candidates for the prevention of inflammation and associated diseases. Thus, the goal of this project is to investigate the role of food bioactives in conjunction with microbiomes in prevention of inflammatory responses.

Interest Area: Food Science

Food safety is very much an agricultural issue.
This multi-researcher project will focus on four critical aspects of food safety: understanding the scope of food safety problems, characterizing the scientific basis of pathogenic organisms' survival, development of methodology for detection, and translating knowledge through food safety extension research and activates. Together these activities will contribute to the long term goal of reducing the overall risk of foodborne illness.

Interest Area: Food Science

Pages