Back to top

NIFA Planned Research Initiatives

Agriculture

Department of Project: Department of Microbiology

Nearly all food and agricultural waste in the U.S. enters landfills, making it the largest contributor of material entering these sites. Biological pre-treatment of large organic molecules by fermentative organisms lowers the high organic carbon load in waste, lowers wastewater treatment costs, and can produce bioenergy to partially offset costs. Conceivably, microbes that grow best above 80°C, or so-called ‘hyperthermophiles’, could be used to consolidate wastewater heat treatment and organic remediation in a single step to decrease costs while producing H2 as an energy product.

African trypanosomes are flagellated protozoa that cause sleeping sickness in people and Nagana in domestic animals. These diseases are fatal if left untreated. The diseases are endemic in the humid and semi-humid zones of Africa affecting a landmass of 10 million km 2 and 36 countries. Trypanosomiasis precludes cattle-based agriculture from much of this area and threatens up to 60 million people, of whom about a half million are presently infected.

Department of Project: Cranberry Station

Cranberry production has a long history in Massachusetts (MA) that adds important economic and aesthetic value to the region.  About 30% of U.S. acreage and the two largest cranberry handler companies are located in Massachusetts. In efforts to maximize production efficiency and profitability, and in response to low per barrel (100lb unit of measure) pricing, cranberry growers have identified replanting to higher‐yielding, large‐fruited cultivars as a key practice that can increase their per acre returns. In this project, we will focus on key pest and water management practices for large fruited, high yielding, cranberry hybrid cultivars.

 Despite the fact that plants are a rich source of novel molecules, valuable to both basic and applied sciences, only a fraction of the pathways and compounds in plants have been explored. The project proposed here seeks to discover novel plant-produced natural products with unique and valuable properties, as well as the genes and pathways involved in their synthesis. At the core of this effort is an extensive living Plant Cell Culture Library (PCCL) that was recently (2014) donated to UMass by Monsanto

Department of Project: Department of Biology

This project proposes to capture DNA sequences from armored scale insects intercepted at plant quarantine stations, while carefully identifying each specimen in the traditional way by mounting on a microscope slide. The results -- DNA sequences from well-identified specimens—will help us develop a DNA-based system of identification, and also contribute to improving our understanding of the history and diversity of armored scale insects and their relationships with their host plants.

Department of Project: Stockbridge School of Agriculture

This projects involves two aspects of equine operations: manure handling and a comparison of footing materials. This project will evaluate two simple low cost aerated static composting systems for typical small acreage horse and/or livestock operations. In addition, it  will evaluate various footing materials and provide the cost of operation and materials for each used material.

Optimal food production by plants requires a sufficient supply of soil nutrients, the most limiting of which is nitrogen. Sustained agricultural productivity has historically been maintained in the rich world by copious application of synthetic nitrogen fertilizers, with high cost to the economy and the environment. Unique among crop species, legumes produce their own nitrogen nutrient through a symbiosis with nitrogen-fixing bacteria collectively known as rhizobia. In this symbiosis, the bacteria convert molecular nitrogen into ammonia in exchange for host photosynthate. Studying the nitrogen-fixing symbiosis and fully explore its potential can boost the productivity of legume crops in the short term, and may expand this ability to non-legume crops over the long run. However, the nitrogen-fixing symbiosis is a complex system, and currently we know too few of the molecular players involved. This project will optimize two methods to reduce the activity of a given gene, and use these methods to screen for legume genes required for the function of the nitrogen-fixing symbiosis. The result of such endeavors should be a comprehensive list of legume genes playing critical roles in interacting with their rhizobial symbionts, and help unveal crucial biological processes in the interaction between plants and beneficial microbes.

Department of Project: Department of Biology

    All food crop varieties, regardless of species, must meet certain quality standards related to their role in food production. Humans have achieved these quality standards through millennia via the processes of domestication and breeding for improvement.

Department of Project: Stockbridge School of Agriculture

Rootstocks are the most critical element in any orchard system.  It controls disease and insect susceptibility, tree vigor, treeproductivity and fruit quality and maturation.  Many new rootstocks become available annually, and our work evaluates those rootstocks under Massachusetts conditions.  Compiled with evaluations from across North america, we are able then to make very good recommendations regarding rootstock use in orchard systems.  Expected outcomes include increased orchard profitability and a general reduction in orchard canopy volume.  the latter results in lower pesticide requirements.  Further expected impacts include improved fruit quality. 

Department of Project: Stockbridge School of Agriculture

Utilizing food systems to improve nutrition without the need for artificial fortification of food or use of dietary supplements of mineral nutrients is important in ending malnutrition. Malnutrition from deficiencies of mineral elements is reported to be on the rise worldwide, even in the United States. It is estimated that half of the world population suffers from incidences of mineral nutrient deficiencies. These deficiencies limit the physical, intellectual, and mental health activities of the affected people. The deficiencies appear to derive from diminished contents of mineral nutrients in foods of plant (vegetables, fruits) or animal (meats, milk, cheese) origins. With fruits and vegetables, the decline in nutrients is related in part to depletion of nutrients from soils without adequate replenishment with fertilization. Some of the diminished nutrient contents in fruits and vegetables may be related to genetics of new cultivated varieties of produce. Research is needed to develop systems of food crop production that will supply adequate mineral nutrition directly through crop-related foods and from meats and dairy products from livestock and poultry that are provided with adequate mineral nutrition. The research proposed under this project will provide a foundation of data obtained through field, greenhouse, and laboratory research to enable the investigators to pursue studies in planning sustainable food systems for human nutrition and crop production. The research will allow the investigators to obtain data that will help to ascertain if the nutrient content of vegetables and fruits can be enhanced through selection of crop varieties and improved nutrition of crops through fertilization and soil amendments.

Department of Project: Department of Biology

Agricultural crops exist as part of an ecosystem, in which they interact not only with pest species but also with a wide range of "mutualists," including pollinators, beneficial soil fungi, and natural enemies of pests. This project addresses how interactions amongst both damaging and beneficial species affect crops and pollinators by examining three different economically important systems in Massachusetts: production of cucumbers and cranberries and managed bees.

The relationship between domesticated animals and humans is a close one, and has existed for at least ten thousand years. It is important to understand the immune defenses of many animals, in addition to the immune defenses of humans and mice. The goal of our project is is characterize the genetic diversity of a family of immune receptors in domesticated animals and use this information for selective breeding and the design of better vaccines.

Preventative and therapeutic reproductive management strategies...that are not drug-base will improve animal reproductive performance.  This is a key part of sustaining an agricultural production system that is highly competitive in the global economy. The research proposed here will focus on several important areas. The team continues to conduct studies to identify novel genes and cell function that might contribute to predicting oocyte quality.  The expression of factors that regulate luteal development, function, and regression are also central to improving female fertility in dairy and beef cattle. Likewise, environmental and metabolic stress negatively impact embryonic and fetal survival in cattle and sheep; and therefore, represent an additional area of research focus.

Department of Project: Department of Biology

In maize and the grass family, programmed cell death has a particular role to play in floral development. Maize flowers are initially hermaphroditic, but become either male or female through differential organ abortion. In male flowers, the female floral organs (the carpels) stop growing after they have formed, and eventually undergo programmed cell death. Programmed cell death in the carpels of the male maize floret is partially under the control of the transcription factor grassy tillers1. In gt1 mutants, the carpels in male flowers do not abort completely (Whipple et al.; Bartlett et al., 2015). However, gt1 mutant flowers are not fully hermaphroditic, indicating the existence of other genes that act with gt1 to regulate carpel abortion and programmed cell death. Which other genes are involved in carpel abortion? How do they interact with known sex determination genes in maize?

We have designed a series of genetic experiments geared at answering these questions. We will use mutant analysis to investigate whether gt1 is part of known sex determination pathways in maize. In addition, we have isolated four maize mutants where the gt1 mutant phenotype is strongly enhanced and programmed cell death in male flowers is disrupted. Using genetic and genomic tools, we will identify the genes that have been disrupted in these mutants, and work to determine their precise roles in mediating growth repression and programmed cell death.

Two new fungicides now dominate applications of choice during cranberry bloom and are recommended for simultaneous use. Growers frequently add an insecticide simultaneously to the fungicide mix in order to manage the key pest, cranberry fruitworm. Alone, all of the compounds are considered 'bee safe' and bloom sprays are allowed. Our preliminary assessments suggest that bees may be at risk by these combination sprays, perhaps owing to a synergy of the compounds. The proposed cage studies will look at immediate and more long term impacts of this practice.

Nutrition

Department of Project: Department of Nutrition

Mounting epidemiological and experimental evidence consistently indicates that obesity is a robust risk factor for several common cancers, and especially so for colorectal cancer. As obesity has reached an epidemic level and increases in the scope of the problem are further projected, it is critical to understand the mechanism(s) responsible for the link and thereby to develop strategies for prevent obesity-related cancer. The aim of this project is to explore dietary strategies to attenuate obesity-associated colonic inflammation.

Department of Project: Department of Nutrition

This research will investigate whether the same type of physical environment needed to promote improved dietary behaviors in families and children will also be effective in older adults. Information gathered will assist nutrition professionals in designing interventions for older adults emphasizing the need for fruits, vegetables and whole grains in the diet and based on factors relevant to them. Results will also be used to design community-wide food and environmental policies.

Department of Project: Stockbridge School of Agriculture

This research focuses on two essential organ systems of house flies, in order to explore non-traditional control strategies for the insects. Control of flies is thought to have a potential strong impact on transmission of food pathogens.

Department of Project: Department of Nutrition

 A major driver of food choice today among consumers is health promotion, which has resulted in ever-expanding research on bioactive food components and nutriceuticals. As each person's diet is a key contributor to health and disease risk, agriculture has been a core sector of economic viability and food production systems with the increasing recognition of the interface between nutrition and agriculture.

Studies have repeatedly demonstrated many health benefits of food-based bioactive components, suggesting that bioactive molecules in our diet can be effective in preventing or delaying the disease process.

Therefore it is important to identify the novel bioactive molecules...capable of preventing diseases...through cellular signaling and gene regulation.

 

There is a great need to provide women with evidence based advice on how they can reduce their risk of developing breast cancer. Research has shown that compounds in fruits and vegetables have anti-cancer properties and most people agree that a diet rich in nutritious fruits and vegetables may help prevent breast cancer.  Because we want to look at changes directly in breast tissue of young women, we will study breastmilk and conduct a diet intervention study in women who are nursing their first born child.

Department of Project: Department of Nutrition

The overall goal of this project is to increase the consumption of fruits and vegetables in a community of families in a low income, multi-cultural and multiethnic
neighborhood of Worcester, Massachusetts, by integrating expertise in Agriculture, Food Access, and Nutrition Education programming and by increasing the availability of fruits and vegetables for people living in the target area.

Department of Project: Department of Nutrition

Breastfeeding is now recognized as the optimal feeding for healthy child development, including in the prevention of childhood obesity

Obesity is higher among black and Latino children compared to their white peers, regardless of gender and age (ranging from preschoolers to adolescents). On an alarming note, research now shows that overweight and obesity exist in very young children. This suggests that how a child is fed early in life is important in preventing childhood obesity. Currently, the scientific evidence suggests that childhood obesity is due to a complex relationship between genes, behavior and the environment, however, the fast rise of the obesity epidemic implies a significant influence of environmental factors. One such environmental influence is in the area of infant feeding

Commercial Horticulture

Department of Project: Stockbridge School of Agriculture

The public desires turfgrass that is well maintained with less chemical inputs, however, these expectations are difficult to reliably meet without a better understanding of the complex interactions between plants and the microbial community. The microbial communities that encompass the turfgrass system are vast and diverse. They include studying interactions between the pathogenic and beneficial microbes that reside on the surface of turfgrass, rhizosphere, rhizoplane, and root interim microbiome. These areas can be further investigated due to the recent technological advances/tools and can facilitate the development of environmentally sustainable management practices and inputs.

Due to regulatory changes, golf course superintendants have been left with no effective management for plant parasitic nematodes. This research will test commercially-available and experimental alternatives.

Community & Economic Vitality

Communities across the New England region and the country are facing challenges from climate change including more extreme storms, hotter and longer-lasing heat waves, more rain in winter and less in summer, as well as the slower but significant effects of sea level rise. Given the incremental development and long lives of the built environment, changes in municipal regulations take years to significantly change the buildings and infrastructure that make up our cities and towns. As a result, it is essential that communities begin now to adapt their built form regulations (zoning, building codes, road specifications, sewer infrastructure, etc.) so that as climate impacts worsen in the next decades, harm is minimized. However, outside of the major global cities such as Boston and New York, it is not clear how many communities have taken steps toward climate change adaptation.

New research into the challenges facing Springfield will offer insights into processes and approaches for revitalizing cities and will:

· Identify trends and reasons some American cities are rebounding

· Identify the factors that are inhibiting the revitalization of legacy cities

· Identify the factors that are inhibiting the revitalization of Springfield

· Identify new approaches to revitalizing legacy cities, including Springfield

· Disseminate new approaches to revitalizing legacy cities in ways that can impact other cities

· Explore ways to optimize the partnership between the UMass Design Center and the City of Springfield

· Implement new university supported design and planning projects in Springfield

Department of Project: Department of Resource Economics

The goal of this project is to understand  the many complexities of physical and mental health faced by rural low-income families within the context of their communities.  As more and more families, regardless of income level, face financial insecurity, those who are already at the bottom of the economic ladder become even more vulnerable. It is the economic issues confronting rural, disadvantaged families due to poor physical and mental health that will be addressed through this project.

Department of Project: Department of Resource Economics

Rural, low-income families experience greater health disparities and face greater health challenges such as insufficient health services, inadequate health insurance coverage, and lower levels of health literacy, than the nation as a whole. As more and more families, regardless of income level, face financial insecurity, those who are already at the bottom of the economic ladder become even more vulnerable. It is the economic issues confronting rural,disadvantaged families due to poor physical and mental health that will be addressed through this project

Environmental Conservation

This project utilizes robotic submersible technology to characterize submerged aquatic vegetation (SAV) blooms in the Charles River in Massachusetts.

Department of Project: Department of Resource Economics

Hypothetical bias is a major problem in the economic valuation of ecosystem services. Because of this bias, the estimated value of ecosystem services may often be in error. The purpose of this research is to devise and test an improved method for the elimination of hypothetical bias

This project aims to design and synthesize the renewable biopolymer chitosan into novel nano-constructs that will efficiently remove tungsten from dilute aqueous solutions.

Your land is a part of your legacy. You have been a good steward of your land. Deciding what will happen to your land after you are gone is the next critical step of being a good steward. In fact it may be the most important step you can take as a landowner. Who will own your land and how will it be used? What will your legacy be?

Your land is likely one of your most valuable assets, especially if you have owned it for a long time and it has increased in value.  However, there is more to land than just its financial value. Because land can be connected to memories, experiences, and feelings, your land may also have significant personal value. Deciding what to do with your land brings with it the challenge of providing for both these financial and personal needs.

Fishing is highly popular worldwide and a dominant use of many fish stocks (Cooke & Cowx 2004). There is a growing movement where anglers voluntarily practice catch-and-release to help maintain healthy fish stocks. It is therefore essential to develop conservation-minded angling practices to ensure the sustain ability of recreational fisheries and the conservation of exploited fish species.

 The purpose of this work is to determine if depolarizing insecticides, specifically the neonicotinoid, imidacloprid, cause insulin resistance (IR) in the obesity model insect D. melanogaster.  Employing field-realistic concentrations establishes this as a proof-of-principle experiment to develop the tools and strategy to study this process in the honeybee and its relationship to CCD. Nutritional factors are established major stressors involved in CCD. The reduced ability of bees to assimilate glucose due to IR would intensify the stress already caused by nutritional resources that are limited or of poor quality.

Department of Project: Department of Biology

Eastern white pine has enormous economic value throughout its range. Over the region, the net volume of white pine saw logs is over 186 billion board feet (USDA Forest Service, Forest Inventory and Analysis). With a typical market price of $100/1,000 bd ft, the potential value of standing white pine is $18.6 billion. White pine attains the largest dimensions of any eastern tree serving as a critical habitat for many species of wildlife that depend on emergent crowns and large snags and downed woody debris. In addition, white pine serves as an important landscape ornamental and is widely planted in towns and cities across the eastern United States.  However,  in recent years White pines have experienced unprecedented damage due to native pests and pathogens that reduce growth, productivity and economic value.

Department of Project: Department of Resource Economics

This project aims to design and conduct economic laboratory experiments to investigate behavioral issues related to the defense of common pool resources from encroachment by outsiders. Common pool resources are assets -- often natural assets such as forests, fisheries and water supplies --t hat are managed by a group of users. We will design and conduct a series of laboratory experiments to examine the ability of a group of resource users to simultaneously manage their own exploitation of a resource and defend their resource from outside encroachment.

Department of Project: Department of Resource Economics

A number of studies show that the probability of audit and the size of the penalty for violation impact compliance rates, Advancing our understanding of these issues will lead to more efficient enforcement in the sense that for a given budget the regulator will be able to induce a higher level of compliance. The second stage of the project will investigate the effects of general deterrence and audit uncertainty in markets.

 Invasive plants are species introduced from another region (non-native) that have established self-sustaining populations and are spreading, often with substantial negative consequences.  Invasive plants have numerous detrimental effects on forest ecosystems.  Several forest understory invasive plants, such as oriental bittersweet, autumn olive, and honeysuckle outcompete or reduce growth of native vegetation. For example, glossy buckthorn grows in dense thickets that shade out native tree saplings and reduce their overall survival by up to 90%. Invasive plants also threaten forest regeneration by altering soil chemistry. For example, garlic mustard releases allelopathic chemicals that kill soil mycorrhizae and inhibit the establishment of native tree seedlings.  As a result of their vigorous growth, invasive plants are often able to dominate ecosystems following disturbance and impede forest succession.

Department of Project: Department of Biology

Many bee pollinators are in decline, and exposure to diseases has been implicated as one of the potential causes. In my lab, we have already established that pollen from one domesticated sunflower source dramatically reduces Crithidia infection loads in the common eastern bumble bees in the laboratory, and that consumption of this pollen improves performance of healthy and infected bee microcolonies. We will expand this work by growing many sunflower cultivars and related taxa, collecting pollen, and repeating laboratory assays to establish how widespread this medicinal trait is across sunflower-related taxa.

The intent of this research project is to investigate the structural viability of using low-value local trees as part of a new, value-added wood-bamboo glue-laminated building product.

Invasive plants lead to the loss of crop revenue in agricultural systems, damage native habitats and wildlife populations, and alter ecosystem services such as nutrient cycling. This project will map the abundance of 13 problematic invasive plants across the northeastern United States by collecting expert knowledge. We will then predict invasion risk based on current climactic suitability, as well as future risk associated with climate change.

American elms represent some of the most culturally and economically significant urban trees. Their contributions to the urban landscape are numerous and include: carbon sequestration, capture of storm water and airborne particulate matter, reduced heating and cooling costs through wind buffering and shade and enhanced aesthetics with their large, sweeping canopies. Prior to the introduction of Dutch Elm Disease, American elms dominated the urban and suburban landscape because of their beauty, rapid growth rates and ability to tolerate difficult growing conditions.  Despite the devastating effects of the disease, millions of American elms still occupy the urban and forest landscape today. But, after decades of regular injection the costs associated with these treatments are adversely impacting tree heath and this issue must be addressed. The UMass Shade Tree Laboratory, now the Plant Diagnostic Laboratory, was founded in 1935 with the sole purpose of combating the DED epidemic. Now, 80 years later the fight against this destructive disease continues in ways that could never be predicted decades ago.

Department of Project: Stockbridge School of Agriculture

Global climate change affects every aspect of our life. Global warming increases the intensity of drought, which leads to the increase in frequency and severity of forest fires. Beyond being a source of soot and polyaromatic hydrocarbons (PAHs), severe wildfires/forest fires can damage soils, water quality and quantity, fisheries, plant communities, wildlife habitat, and endangered species; result in economic and property loss; and cause harms to the environment and public health. Forest thinning or prescribed burns reduce the accumulation of hazardous fuels and restore forest health.  The major cause of global warming is the ever-increasing concentration of carbon dioxide (CO2) in the atmosphere from the use of carbon-based fuels. Biochar, the anaerobic pyrolysis productof biomass waste material, has attracted research interest as a soil amendment that may improve soil structure, moisture retention, and buffering capacity, and that helps control plant root diseases and sequester carbon in soils (instead of release to air as CO2), as a result, mitigate greenhouse effect. Therefore, the goal of this proposed project is to utilize wood waste materials to produce biochar which can be used in both forest and agricultural soils to improve soil quality, sequester carbon in soils, and reduce the emission of greenhouse gases (e.g., CO2 and N2O).

 

The long-term goal of this research is to gather more empirical data that will help practitioners decide which trees to choose for a particular site. The same settings where trees provide benefits present challenging and even severe growing conditions that may thwart survival and growth (Jutras et al. 2010). Empirical data to describe the survival and growth of such trees are limited, and most of the work has considered trees growing in field plots rather than actual residential settings (Watson et al. 1986; Morgenroth 2011). This work will help to quantify survival and growth of trees in residential settings.

Department of Project: Department of Geosciences

. Natural and restored wetlands are among the most biodiverse ecosystems present in Massachusetts, providing unique habitat for species ranging from insects and endangered native fishes to coastal birds and songbirds, and plants which thrive in environments that range from completely saturated year-round to dry. Because this niche environment is crucially important for ecosystem services (including, but not limited to verdant habitat and food supply for a large diversity of plant, animal and insect species, water filtration, slowing and spreading of floodwaters, limiting erosion, storage of carbon and other nutrients, temperature buffering, pollinator habitat and forage lands, and water storage), significant attention has been paid to conserving and restoring wetlands and their optimum function wherever possible. One of the most basic, defining metrics of a wetland is, as the name implies, its wetness. The relative water content in the soil can be assessed in a variety of ways, and this quantity alone is important for reasons beyond wetland function. Specifically, for a wetland to become established and remain functional independently, sufficient water must be present throughout the year to favor wetland plants and animals, which thrive in wet environments but are unlikely to outcompete invasives or other species in drier regimes. We foresee a continued interest in wetland restoration in Massachusetts and predict that measurable metrics to assess the success of such restoration efforts are desired. To that end, we propose developing a series of tools to measure soil moisture and subsurface thermal regimes to monitor change over time.

Two new fungicides now dominate applications of choice during cranberry bloom and are recommended for simultaneous use. Growers frequently add an insecticide simultaneously to the fungicide mix in order to manage the key pest, cranberry fruitworm. Alone, all of the compounds are considered 'bee safe' and bloom sprays are allowed. Our preliminary assessments suggest that bees may be at risk by these combination sprays, perhaps owing to a synergy of the compounds. The proposed cage studies will look at immediate and more long term impacts of this practice.

This study will investigate how the estimated density of a forest ecosystem bioindicator species, the red backed salamander (P. cinereus)  is influenced by the design of a commonly applied sampling protocol. The project will provide important insights into the utility of artificial cover board surveys as a method for estimating salamander density for use as an indicator of forest ecosystem condition.

Acid rain and atmospheric pollution continue to be regional and national problems. The site's data contributes to the accurate assessment of precipitation chemistry and the effectiveness of the nation's air pollution laws and regulations.

Department of Project: Department of Microbiology

Global climate change and nitrogen deposition are processes that will only increase as industrialization continues. The purpose of this study is to understand the response of the microbially driven soil nitrogen cycle to the combined effects of temperature increase and nitrogen amendments in forest soils of New England.

Energy

Department of Project: Department of Microbiology

Nearly all food and agricultural waste in the U.S. enters landfills, making it the largest contributor of material entering these sites. Biological pre-treatment of large organic molecules by fermentative organisms lowers the high organic carbon load in waste, lowers wastewater treatment costs, and can produce bioenergy to partially offset costs. Conceivably, microbes that grow best above 80°C, or so-called ‘hyperthermophiles’, could be used to consolidate wastewater heat treatment and organic remediation in a single step to decrease costs while producing H2 as an energy product.

Pages